Skip to main content
Log in

Colorado geoid computation experiment: overview and summary

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The primary objective of the 1-cm geoid experiment in Colorado (USA) is to compare the numerous geoid computation methods used by different groups around the world. This is intended to lay the foundations for tuning computation methods to achieve the sought after 1-cm accuracy, and also evaluate how this accuracy may be robustly assessed. In this experiment, (quasi)geoid models were computed using the same input data provided by the US National Geodetic Survey (NGS), but using different methodologies. The rugged mountainous study area (730 km \(\times \) 560 km) in Colorado was chosen so as to accentuate any differences between the methodologies, and to take advantage of newly collected GPS/leveling data of the Geoid Slope Validation Survey 2017 (GSVS17) which are now available to be used as an accurate and independent test dataset. Fourteen groups from fourteen countries submitted a gravimetric geoid and a quasigeoid model in a 1′\(\times \)1′ grid for the study area, as well as geoid heights, height anomalies, and geopotential values at the 223 GSVS17 marks. This paper concentrates on the quasigeoid model comparison and evaluation, while the geopotential value investigations are presented as a separate paper (Sánchez et al. in J Geodesy 95(3):1. https://doi.org/10.1007/s00190-021-01481-0, 2021). Three comparisons are performed: the area comparison to show the model precision, the comparison with the GSVS17 data to estimate the relative accuracy of the models, and the differential quasigeoid (slope) comparison with GSVS17 to assess the relative accuracy of the height anomalies at different baseline lengths. The results show that the precision of the 1′ × 1′ models over the complete area is about 2 cm, while the accuracy estimates along the GSVS17 profile range from 1.2 cm to 3.4 cm. Considering that the GSVS17 does not pass the roughest terrain, we estimate that the quasigeoid can be computed with an accuracy of ~ 2 cm in Colorado. The slope comparisons show that RMS values of the differences vary from 2 to 8 cm in all baseline lengths. Although the 2-cm precision and 2-cm relative accuracy have been estimated in such a rugged region, the experiment has not reached the 1-cm accuracy goal. At this point, the different accuracy estimates are not a proof of the superiority of one methodology over another because the model precision and accuracy of the GSVS17-derived height anomalies are at a similar level. It appears that the differences are not primarily caused by differences in theory, but that they originate mostly from numerical computations and/or data processing techniques. Consequently, recommendations to improve the model precision toward the 1-cm accuracy are also given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are publically available here: https://geodesy.noaa.gov/GEOID/research/co-cm-experiment/; https://geodesy.noaa.gov/GEOID/GSVS17/index.shtml; The airborne gravity data are available at NGS: https://www.ngs.noaa.gov/GRAV-D/data_ms05.shtml; The standardized 1′ × 1′ geoid, quasigeoid grids, input and validation data sets are available at the International Service for the Geoid (Reguzzoni et al. 2021) https://www.isgeoid.polimi.it/Projects/colorado_experiment.html

Abbreviations

AUTh:

Aristotle University of Thessaloniki, Greece

CASM:

Chinese Academy of Surveying and Mapping, China

CGS:

Canadian Geodetic Survey, Canada

Curtin:

Curtin University, Australia

DGFI:

Deutsches Geodätisches Forschungsinstitut, Technical University of Munich, Germany

DTU:

Technical University of Denmark, Denmark

Minia:

Minia University, Egypt

NGS:

US National Geodetic Survey, NOAA, USA

GSI:

Geospatial Information Authority of Japan, Japan

IAPG:

Institute for Astronomical and Physical Geodesy, Technical University of Munich, Germany

ITU:

Istanbul Technical University, Turkey

KTH:

University of Gävle, Lantmäteriet, Royal Institute of Technology, Sweden

NTIS-GEOF:

New Technologies for the Information Society, University of West Bohemia, Czech Republic & University of Zagreb, Croatia

Polimi:

Politecnico di Milano, Italy

References

  • Abd-Elmotaal H, Kühtreiber N (2003) Geoid determination using adapted reference field, seismic moho depths and variable density contrast. J Geod 77:77–85. https://doi.org/10.1007/s00190-002-0300-7

    Article  Google Scholar 

  • Abd-Elmotaal H, Kühtreiber N (2021) Direct harmonic analysis for the ellipsoidal topographic potential with global and local validation. Surv Geophys 42:159–176. https://doi.org/10.1007/s10712-020-09614-4

    Article  Google Scholar 

  • Ågren J, Ellmann A (2019) Report of the Sub-commission 2.2: Methodology for Geoid and Physical Height Systems, Reports 2015–2019 of the International Association of Geodesy (IAG), Travaux de l’AIG Vol. 41. Commission 2:33–38

    Google Scholar 

  • Ågren J, Sjöberg LE, Kiamehr R (2009) The new gravimetric quasigeoid model KTH08 over Sweden. J Appl Geodesy 3(3):1

    Article  Google Scholar 

  • Ahlgren K, Wang YM, Li X, and Youngman M (2018) Towards a More Consistent Geoid Model for North America. FIG Congress 2018 Proceedings, Istanbul, Turkey

  • Claessens SJ, Filmer MS (2020) Towards an International Height Reference System: insights from the Colorado experiment using AUSGeoid computation methods. J Geod 94:52. https://doi.org/10.1007/s00190-020-01379-3

    Article  Google Scholar 

  • Damiani TM, Youngman M, and Johnson J (2017) GRAV-D General Airborne Gravity Data User Manual, GRAV-D Airborne Data Release User Manual v2.1. https://geodesy.noaa.gov/GRAV-D/data/NGS_GRAV-D_General_Airborne_Gravity_Data_User_Manual_v2.1.pdf.

  • Drewes H, Kuglitsch F, Ádám J, Rózsa S (2016) Geodesist’s Handbook. J Geod 90:907. https://doi.org/10.1007/s00190-016-0948-z

  • Flury J, Rummel R (2009) On the geoid–quasigeoid separation in mountain areas. J Geod 83:829–847. https://doi.org/10.1007/s00190-009-0302-9.

  • Forsberg R, Featherstone WE (1998) Geoids and cap sizes. In: Geodesy on the Move - gravity, geoid, geodynamics and Antarctica, Proceedings IAG scientific assembly, Rio de Janeiro, Sep 3–9, in: Forsberg, Feissel and Dietrich (eds.), IAG symposia 119, pp. 194–200, Springer Verlag

  • Forsberg R (1987) A new covariance model for inertial gravimetry and gradiometry. J. Geoph. Res 92:1305–1310

    Article  Google Scholar 

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86(B9):7843–7854

    Article  Google Scholar 

  • Grigoriadis VN, Vergos GS, Barzaghi R et al (2021) Collocation and FFT-based geoid estimation within the Colorado 1 cm geoid experiment. J Geod 95:52. https://doi.org/10.1007/s00190-021-01507-7

    Article  Google Scholar 

  • Heck B (2011) A Brovar-type solution of the fixed geodetic boundary-value problem. Stud Geophys Geod 55:441–454. https://doi.org/10.1007/s11200-011-0025-2

    Article  Google Scholar 

  • Heiskanen W, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hirt C, Kuhn M, Claessens S, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short scale gravity field using the ERTM2160 gravity model. Comput Geosci 73:71–80. https://doi.org/10.1016/j.cageo.2014.09.001

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Wien New York

    Google Scholar 

  • Huang J, Wang YM (2019) Report of Joint Study Group 0.15: Regional geoid/quasigeoid modelling – theoretical framework for the sub-centimetre, Reports 2015–2019 of the International Association of Geodesy (IAG), Travaux de l'AIG Vol. 41, Inter-Commission Committee in Theory, pp 40–45

  • Huang J, Véronneau M (2013) Canadian gravimetric geoid model 2010. J Geod 87:771–790. https://doi.org/10.1007/s00190-013-0645-0

    Article  Google Scholar 

  • Ihde J, Sánchez L, Barzaghi R, Drewes H, Foerste C, Gruber T, Liebsch G, Marti U, Pail R, Sideris M (2017) Definition and proposed realization of the International Height Reference System (IHRS). Surv Geophys 38(3):549–570. https://doi.org/10.1007/s10712-017-9409-3

    Article  Google Scholar 

  • Işık MS, Erol B, Erol S, Sakil FF (2021) High-resolution geoid modeling using least squares modification of stokes and hotine formulas in Colorado. J Geod 95:49. https://doi.org/10.1007/s00190-021-01501-z

    Article  Google Scholar 

  • Jiang T, Dang YM, Zhang CY (2020) Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: a case study in the mountainous area, Colorado. Earth, Planets and Space 72:189. https://doi.org/10.1186/s40623-020-01287-y

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, and Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).

  • Koch KR, Pope AJ (1972) Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull Géod 46:467–476

    Article  Google Scholar 

  • Liu Q, Schmidt M, Sánchez L, Willberg M (2020) Regional gravity field refinement for (quasi-) geoid determination based on spherical radial basis functions in Colorado. J Geod. https://doi.org/10.1007/s00190-020-01431-2

    Article  Google Scholar 

  • Mayer-Gürr T, Kvas A, Klinger B, Rieser D, Zehentner N (2015) The new combined satellite gravity field only model GOCO05s. Geophysical Research Abstracts, vol 17, EGU2015–12364. EGU General Assembly 2013, Wien, Austria

  • Matsuo K and Forsberg R (2021) Gravimetric geoid and quasigeoid computation over Colorado based on the Remove–Compute–Restore Stokes-Helmert scheme, submitted to J Geod, Special Issue on Reference Systems in Physical Geodesy

  • Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the earth, Transl. from Russian (1960) Israel Program for Scientific Transl., Jerusalem

  • Moritz H (2000) Geodetic Reference System 1980. J Geod 74(128–133):2000. https://doi.org/10.1007/s001900050278

    Article  Google Scholar 

  • Moritz H (1980) Advanced Physical Geodesy. Wichmann HerbertWichmann Verlag, Karlsruhe

    Google Scholar 

  • Pail R, Fecher T, Barnes D, Factor JF, Holmes SA, Gruber T, Zingerle P (2018) Short note: the experimental geopotential model XGM2016. J Geod 92:443–451. https://doi.org/10.1007/s00190-017-1070-6

    Article  Google Scholar 

  • Pail R, Fecher T, Barnes D, Factor J, Holmes S, Gruber T, Zingerle P (2017) The experimental gravity field model XGM2016. GFZ Data Services. https://doi.org/10.5880/icgem.2017.003

    Article  Google Scholar 

  • Rebischung P, Griffiths J, Ray J et al (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16:483–494. https://doi.org/10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Reguzzoni M, Carrion D, De Gaetani CI, Albertella A, Rossi L, Sona G, Batsukh K, Toro Herrera JF, Elger K, Barzaghi R, Sansó F (2021) Open access to regional geoid models: the International Service for the Geoid. Earth System Science Data 13:1653–1666. https://doi.org/10.5194/essd-13-1653-2021

    Article  Google Scholar 

  • Rexer M, Hirt C, Claessens S, Tenzer R (2016) Layer-Based Modelling of the Earth’s Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation. Surv in Geophy 37:1035–1074. https://doi.org/10.1007/s10712-016-9382-2

    Article  Google Scholar 

  • Ries JC, Fanes RJ, Shum CK, Watkins MM (1992) Progress in the determination of the gravitational coefficient of the Earth. Geophys Res Lett 19(6):529–531. https://doi.org/10.1029/92GL00259

    Article  Google Scholar 

  • Sánchez L, Ågren J, Huang J, Wang YM, Mäkinen J, Pail R, Barzaghi R, Vergos GS, Ahlgren K, Liu Q (2021) Strategy for the realisation of the International Height Reference System (IHRS). J Geodesy 95(3):1. https://doi.org/10.1007/s00190-021-01481-0

  • Sánchez L, Barzaghi R (2020) Activities and plans of the GGOS Focus Area Unified Height System, EGU General Assembly 2020, EGU2020-8625, https://doi.org/10.5194/egusphere-egu2020-8625.

  • Sánchez L (2019) Report of the GGOS Focus Area “Unified Height System” and the Joint Working Group 0.1.2: Strategy for the Realization of the International Height Reference System (IHRS), Reports 2015–2019 of the International Association of Geodesy (IAG), Travaux de l'AIG Vol. 41, Global Geodetic Observing System (GGOS), pp 42–51

  • Sánchez L, Ågren J, Huang J, Wang YM, Forsberg R (2018) Basic agreements for the computation of station potential values as IHRS coordinates, geoid undulations and height anomalies within the Colorado 1-cm geoid experiment. Version 0.5, October 30, 2018

  • Sánchez L, Čunderlík R, Dayoub N, Mikula K, Minarechová Z, Šíma Z, Vatrt V, Vojtíšková M (2016) A conventional value for the geoid reference potential W0. J Geod 90:815–835. https://doi.org/10.1007/s00190-016-0913-x

    Article  Google Scholar 

  • Sjӧberg LE (2010) A strict formula for geoid-to-quasigeoid separation, J Geod (2010) 84: 699, https://doi.org/10.1007/s00190-010-0407-1

  • Sjӧberg LE (2003) A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J Geod 77:423–432. https://doi.org/10.1007/s00190-003-0338-1

    Article  Google Scholar 

  • Sjöberg LE (1984) Least-Squares modification of Stokes’ and Vening–Meinez’formula by accounting for truncation and potential coefficients errors. Manuscr Geod 9:209–229

    Google Scholar 

  • Sjöberg LE (1981) Least squares combination of satellite and terrestriall data in physical geodesy. Ann Géophys 37(1):25–30

    Google Scholar 

  • Sjöberg LE (1980) Least squares combination of satellite harmonics, and integral formulas in physical Geodesy. Gerlands Beiträge Zur Geophysik 89(5):371–377

    Google Scholar 

  • Smith DA, Holmes SA, Li X, Guillaume S, Wang YM, Bürki B, Roman DR, Damiani T (2013) Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. J Geod 87:885–907

    Article  Google Scholar 

  • Tscherning CC (1984) The Geodesist’s Handbook, Bull Géod 58(3):1

  • Tscherning, CC and Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations and deflections of the vertical implied by anomaly degree variance models. Department of Geodetic Science, Report No. 208, The Ohio State University

  • Vaníček P, Martinec Z (1994) Stokes-Helmert scheme for the evaluation of a precise geoid. Manus Geod 19(2):119–128

    Google Scholar 

  • van Westrum D, Ahlgren K, Hirt C, Guillaume S (2021) A Geoid Slope Validation Survey (2017) in the rugged terrain of Colorado, USA. J Geod 95:9. https://doi.org/10.1007/s00190-020-01463-8

    Article  Google Scholar 

  • Varga M, Pitoňák M, Novák P, Bašić T (2021) Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA. J Geod 95:53. https://doi.org/10.1007/s00190-021-01494-9

    Article  Google Scholar 

  • Wang YM, Véronneau M, Huang J, Ahlgren K, Krcmaric J, Li X, Avalos D (2021) On the accurate computation of the geoid-quasigeoid separation in a mountainous region–a case study in Colorado with a full extension to the experimental geoid region. J Geodetic Sci (submitted)

  • Wang YM, Li X, Ahlgren K, Krcmaric J (2020) Colorado geoid modeling at the US National Geodetic Survey. J Geod 94:106. https://doi.org/10.1007/s00190-020-01429-w

    Article  Google Scholar 

  • Wang YM, Forsberg R (2019) Report of the Joint Working Group 2.2.2: The 1 cm geoid experiment, Reports 2015-2019 of the International Association of Geodesy (IAG), Travaux de l'AIG Vol. 41, Commission 2, pp 56–58

  • Wang YM, Holmes S, Li X, and Ahlgren K (2017a) NGS Annual Experimental Geoid Models – xGEOID17: What is new and the results, IAG-IASPEI, Kobe, Japan July 30 - August 5, 2017.

  • Wang YM, Becker C, Mader G et al (2017b) The Geoid Slope Validation Survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa. J Geod 91:1261. https://doi.org/10.1007/s00190-017-1022-1

    Article  Google Scholar 

  • Willberg M, Zingerle P, Pail R (2020) Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment. J Geod 94:75. https://doi.org/10.1007/s00190-020-01396-2

    Article  Google Scholar 

  • Willberg M, Zingerle P, Pail R (2019) Residual least-squares collocation: use of covariance matrices from high-resolution global geopotential models. J Geod 93:1739–1757. https://doi.org/10.1007/s00190-019-01279-1

    Article  Google Scholar 

  • Zilkoski DB, Richards JH, Young GM (1992) Results of the general adjustment of the North American Vertical Datum of 1988. Surv Land Inf Syst 52(3):133–149

    Google Scholar 

Download references

Acknowledgements

This study was possible thanks to a strong international cooperation coordinated within IAG, in particular, the IAG Sub-commission 2.2: Methodology for geoid and physical height systems (Ågren and Ellmann 2019); the joint working group 2.2.2: The 1-cm geoid experiment in Colorado (Wang and Forsberg, 2019); the study group 0.15: Regional geoid/quasigeoid modeling—Theoretical framework for the sub-centimeter accuracy of the IAG Inter-Commission Committee on Theory – ICCT (Huang and Wang 2019); and the working group 0.1.2: Strategy for the realization of the IHRS of the Focus Area Unified Height System of the Global Geodetic Observing System—GGOS (Sánchez, 2019; Sánchez and Barzaghi 2020). The authors are especially indebted to the National Geodetic Survey for providing the gravity, topographic and GPS/leveling data sets for this experiment. The authors thank three anonymous reviewers, the Associate Editor and Editor for their time, constructive suggestions and comments, which helped improving the initial version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YMW, LS, JÅ, JH and RF conceptualized and coordinated the Colorado experiment, outlined the standards for the data processing, participated in the computation of the solutions NGS, DGFI, KTH, CGS and DTU and prepared the original draft. YMW, XL, KA and JK computed the solution NGS and performed the comparison/evaluation of the delivered solutions. VNG, GSV and DAN computed the solution AUTh. TJ computed the solution CASM. MVé and JH computed the solution CGS. SC and MF computed the solution Curtin. QL, MS and LS computed the solution DGFI. RF computed the solution DTU. HAAE computed the solution Minia. KM computed the solution GSI. MW, PZ and RP computed the solution IAPG. BE, MSI and SE computed the solution ITU. JÅ computed the solution KTH. MV, TB, MP and PN computed the solution NTIS-GEOF. RB, DC and ÖK computed the solution Polimi. All authors contributed to review and editing.

Corresponding author

Correspondence to Yan Ming Wang.

Appendix. Fundamental parameters, zero-degree harmonic treatment and computation requirements

Appendix. Fundamental parameters, zero-degree harmonic treatment and computation requirements

Fundamental parameters, zero-degree harmonic treatment and computation requirements.

Since a main objective of the Colorado experiment is to compare gravity functionals (i.e., geoid, quasigeoid, potential values) determined using different methodologies, it was necessary to outline a set of basic (minimum) requirements to standardize as much as possible the data processing to avoid gross discrepancies as those caused for instance using different reference ellipsoids or permanent-tide systems. In this way, in addition to the use of the same input data (described in Sect. 3), we agreed to follow the conventions summarized in Table

Table 8 Constants and conventions agreed within the Colorado experiment (cf. Sánchez et al. 2018)

8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.M., Sánchez, L., Ågren, J. et al. Colorado geoid computation experiment: overview and summary. J Geod 95, 127 (2021). https://doi.org/10.1007/s00190-021-01567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01567-9

Keywords

Navigation