Skip to main content
Log in

Parallel spinors on globally hyperbolic Lorentzian four-manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We investigate the differential geometry and topology of globally hyperbolic four-manifolds (Mg) admitting a parallel real spinor \(\varepsilon \). Using the theory of parabolic pairs recently introduced in [22], we first formulate the parallelicity condition of \(\varepsilon \) on M as a system of partial differential equations, the parallel spinor flow equations, for a family of polyforms on an appropriate Cauchy surface \(\Sigma \hookrightarrow M\). The existence of a parallel spinor on (Mg) induces a system of constraint partial differential equations on \(\Sigma \), which we prove to be equivalent to an exterior differential system involving a cohomological condition on the shape operator of the embedding \(\Sigma \hookrightarrow M\). Solutions of this differential system are precisely the allowed initial data for the evolution problem of a parallel spinor and define the notion of parallel Cauchy pair \(({\mathfrak {e}},\Theta )\), where \({\mathfrak {e}}\) is a coframe and \(\Theta \) is a symmetric two-tensor. We characterize all parallel Cauchy pairs on simply connected Cauchy surfaces, refining a result of Leistner and Lischewski. Furthermore, we classify all compact three-manifolds admitting parallel Cauchy pairs, proving that they are canonically equipped with a locally free action of \({\mathbb {R}}^2\) and are isomorphic to certain torus bundles over \(S^1\), whose Riemannian structure we characterize in detail. Moreover, we classify all left-invariant parallel Cauchy pairs on simply connected Lie groups, specifying when they are allowed initial data for the Ricci flat equations and when the shape operator is Codazzi. Finally, we give a novel geometric interpretation of a class of parallel spinor flows and solve it in several examples, obtaining explicit families of four-dimensional Lorentzian manifolds carrying parallel spinors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that \(-1 < \mu \le 1\) and \(\mu \ne 0\).

  2. Note however that there is a typo in Exercise 11, the correct condition being, using the notation of the exercise, \(\vert X(p)\vert < c\) rather than \(\vert X(p)\vert > c\).

References

  1. Ammann, B., Kroencke, K., Müller, O.: Construction of initial data sets for Lorentzian manifolds with lightlike parallel spinors, arXiv:1903.02064 [math.DG]

  2. Arraut, J.L., Craizer, M.: Foliations of \(M^3\) defined by \({R}^2\) - actions. Ann. Inst. Fourier 45(4), 1091–1118 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    Article  MathSciNet  Google Scholar 

  4. Baum, H., Lärz, K., Leistner, T.: On the full holonomy group of Lorentzian manifolds. Math. Z. 277, 797–828 (2014)

    Article  MathSciNet  Google Scholar 

  5. Baum, H., Leistner, T., Lischewski, A.: Cauchy problems for Lorentzian manifolds with special holonomy. Differ. Geom. Appl. 45, 43–66 (2016)

    Article  MathSciNet  Google Scholar 

  6. Baum, H., Leistner, T.: Lorentzian geometry - holonomy, spinors, and Cauchy problems. In: Cortés, V., Kröncke, K., Louis, J. (eds.) Geometric Flows and the Geometry of Space-time. Birkhäuser, London (2018)

    MATH  Google Scholar 

  7. Baum, H., Müller, O.: Codazzi spinors and globally hyperbolic manifolds with special holonomy. Math. Z. 258, 185–211 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bazaikin, Y.V.: Globally hyperbolic Lorentzian manifolds with special holonomy group. Siberian Math. J. 50(4), 567–579 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bernal, A.N., Sanchez, M.: On Smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461 (2003)

  10. Bernal, A.N., Sanchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43–50 (2005)

    Article  Google Scholar 

  11. Blaine Lawson, H., Michelsohn, M.-L.: Spin geometry. Princet. Math. Ser. 38 (1990)

  12. Bryant, R.L.: Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor. Séminaires et Congrés 4, 53–94 (2000)

  13. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)

    Article  MathSciNet  Google Scholar 

  14. Candela, A.M., Flores, J.L., Sanchez, M.: On general plane fronted waves: geodesics. Gen. Rel. Grav. 35, 631–649 (2003)

    Article  MathSciNet  Google Scholar 

  15. Carmo, M.P.: Riemannian Geometry. Birkhäuser, London (1993)

    Google Scholar 

  16. Chatelet, G., Rosenberg, H., Weil, D.: A classification of the topological types of \({\mathbb{R}}^2\) - actions on closed orientable 3-manifolds. IHES 43, 261–272 (1973)

    Article  Google Scholar 

  17. Conlon, L.: Differentiable Manifolds. Birkhäuser, London (2008)

    MATH  Google Scholar 

  18. Conlon, L.: Transversally parallelizable foliations of codimension two. Trans. Am. Math. Soc. 194, 79–102 (1974)

    Article  MathSciNet  Google Scholar 

  19. Costa e Silva, I.P., Flores, J.L.: On the splitting problem for lorentzian manifolds with an \({\mathbb{R}}\)-action with causal orbits. Ann. Henri Poincaré 18, 1635–1670 (2017)

    Article  MathSciNet  Google Scholar 

  20. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  MathSciNet  Google Scholar 

  21. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs, Oxford (2008)

  22. Cortés, V., Lazaroiu, C., Shahbazi, C.S.: Spinors of real type as polyforms and the generalized Killing equation. Math. Z. (2021)

  23. Alekseevsky, D.V., Cortés, V., Devchand, C., Proyen, A.V.: Polyvector super-poincaré algebras. Commun. Math. Phys. 253(2), 385–422 (2005)

    Article  Google Scholar 

  24. Alekseevsky, D.V., Cortés, V.: Classification of N-(super)-extended poincaré algebras and bilinear invariants of the spinor representation of \({\rm S}(p, q)\). Commun. Math. Phys. 183(3), 477–510 (1997)

    Article  Google Scholar 

  25. Fourés-Bruhat, Y.: Théoréme d’existence pour certains systémes d’équations aux derivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

  26. Freibert, M.: Cocalibrated \(G_2\)-structures on products of four- and three-dimensional Lie groups. Differ. Geom. Appl. 31, 349–373 (2013)

    Article  MathSciNet  Google Scholar 

  27. Gorbatsevich, V., Onishchik, A., Vinberg, E.: Lie groups and lie algebras, III: structure of lie groups and lie algebras, Encyclopaedia Math. Sci., vol. 41. Springer, Berlin, 1994

  28. Globke, W., Leistner, T.: Locally homogeneous pp-waves. J. Geom. Phys. 108, 83–101 (2016)

    Article  MathSciNet  Google Scholar 

  29. Hector, G.: Feuilletages En Cylindres. In: Palis, J., do Carmo, M. (eds) Geometry and Topology. Lecture Notes in Mathematics, vol 597. Springer, Berlin (1977)

  30. Herman, M.R.: The Godbillon-Vey invariant of foliations by planes of \(T^3\). In: Palis, J., do Carmo, M. (eds) Geometry and Topology. Lecture Notes in Mathematics, vol 597. Springer (1977)

  31. Konstantis, P., Loose, F.: A classification of Thurston geometries without compact quotients, arxiv: 1403.1726

  32. Konstantis, P.: Three-dimensional homogeneous spaces and their application in general relativity, Dissertation, Eberhardt-Karls-Universität Tübingen (2013)

  33. Lazaroiu, C., Shahbazi, C.S.: Real spinor bundles and real Lipschitz structures. Asian J. Math. 23(5) (2019)

  34. Lazaroiu, C.I., Shahbazi, C.S.: Complex Lipschitz structures and bundles of complex Clifford modules. Differ. Geom. Appl. 61, 147–169 (2018)

    Article  MathSciNet  Google Scholar 

  35. Leistner, T., Lischewski, A.: Hyperbolic evolution equations, Lorentzian holonomy, and Riemannian generalised killing spinors. J. Geom. Anal. 29, 33–82 (2019)

    Article  MathSciNet  Google Scholar 

  36. Leistner, T., Schliebner, D.: Completeness of compact Lorentzian manifolds with abelian holonomy. Math. Ann. 364, 1469–1503 (2016)

    Article  MathSciNet  Google Scholar 

  37. Lischewski, A.: The Cauchy problem for parallel spinors as first-order symmetric hyperbolic system, arXiv:1503.04946 [math.DG]

  38. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  39. Milnor, J.: Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J. (1963)

  40. Moroianu, A., Semmelmann, U.: Generalized Killing spinors and Lagrangian graphs. Differ. Geom. Appl. 37, 141–151 (2014)

    Article  MathSciNet  Google Scholar 

  41. Rosenberg, H.: Foliations by planes. Topology 7(2), 131–138 (1968)

    Article  MathSciNet  Google Scholar 

  42. Rosenberg, H., Roussarie, R., Weil, D.: A classification of closed orientable 3-manifolds of rank two. Ann. Math. 91(3), 449–464 (1970)

    Article  MathSciNet  Google Scholar 

  43. Sharpe, R. W.: Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Springer, Berlin (2000)

  44. Schliebner, D.: Contributions to the Geometry of Lorentzian Manifolds with Special Holonomy, Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultat der Humboldt - Universitat zu Berlin (2014)

  45. Schliebner, D.: On Lorentzian manifolds with highest first Betti number. Ann. Inst. Fourier 65(4), 1423–1436 (2015)

    Article  MathSciNet  Google Scholar 

  46. Schimming, R.: Riemannsche Räume mit ebenfrontiger und mit ebener Symmetrie. Math. Nachr. 59, 129–162 (1974)

    Article  MathSciNet  Google Scholar 

  47. Thurston, W.P.: Geometry and Topology of Three-Dimensional Manifolds. Princeton University Press, New Jersey (1997)

    Book  Google Scholar 

  48. Tod, K.P.: All metrics admitting supercovariantly constant spinors. Phys. Lett. B 121, 241–244 (1983)

    Article  MathSciNet  Google Scholar 

  49. Tondeur, P.: Geometry of Foliations, Monographs in Mathematics. Springer, Berlin (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Murcia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank V. Cortés, T. Leistner, and A. Moroianu for very interesting discussions and comments. Part of this work was undertaken during a visit of C.S.S. to the University Paris-Saclay under the Deutsch–Französische Procope Mobilität program. C.S.S. would like to thank this very welcoming institution for providing a nice and stimulating working environment. The work of Á.M. is funded by the Spanish FPU Grant No. FPU17/04964, with additional support from the MCIU/AEI/FEDER UE Grant PGC2018-095205-B-I00 and the Centro de Excelencia Severo Ochoa Program Grant SEV-2016-0597. The work of C.S.S. is supported by the Germany Excellence Strategy Quantum Universe - 390833306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia, Á., Shahbazi, C.S. Parallel spinors on globally hyperbolic Lorentzian four-manifolds. Ann Glob Anal Geom 61, 253–292 (2022). https://doi.org/10.1007/s10455-021-09808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09808-y

Keywords

Navigation