Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free energy difference to create the M-OH* intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy

This article has been updated

Abstract

Theoretical descriptors differentiate the catalytic activity of materials for the oxygen evolution reaction by the strength of oxygen binding in the reactive intermediate created upon electron transfer. Recently, time-resolved spectroscopy of a photo-electrochemically driven oxygen evolution reaction followed the vibrational and optical spectra of this intermediate, denoted M-OH*. However, these inherently kinetic experiments have not been connected to the relevant thermodynamic quantities. Here we discover that picosecond optical spectra of the Ti-OH* population on lightly doped SrTiO3 are ordered by the surface hydroxylation. A Langmuir isotherm as a function of pH extracts an effective equilibrium constant relatable to the free energy difference of the first oxygen evolution reaction step. Thus, time-resolved spectroscopy of the catalytic surface reveals both kinetic and energetic information of elementary reaction steps, which provides a critical new connection between theory and experiment by which to tailor the pathway of water oxidation and other surface reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photo-electrochemical configuration and optical spectra.
Fig. 2: SVD and rotation analysis.
Fig. 3: Constrained SVD analysis and extraction of 2 ps Ti-OH* population.
Fig. 4: Langmuir isotherm model and the effective equilibrium constant (K).

Similar content being viewed by others

Data availability

The representative data and all of the analyses from the extended dataset that support the findings of this paper are available in the paper and the Supplementary Information. The extended dataset that supports the findings in this paper is available from the corresponding authors on reasonable request.

Change history

  • 25 November 2021

    In the version of this article now appearing online, various notation errors have been corrected to improve readability. No data or conclusions are affected.

References

  1. Hammer, B. & Norskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2004).

    Google Scholar 

  2. Markovic, N. M. Electrocatalysis: interfacing electrochemistry. Nat. Mater. 12, 101–102 (2013).

    Article  CAS  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  4. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  5. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    Article  CAS  Google Scholar 

  6. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  7. Norskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Article  CAS  Google Scholar 

  8. Zhang, M. & Frei, H. Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces. Catal. Lett. 145, 420–435 (2014).

    Article  Google Scholar 

  9. Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).

    Article  CAS  Google Scholar 

  10. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  11. Busch, M. et al. Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016).

    Article  CAS  Google Scholar 

  12. Chen, X. et al. The formation time of Ti–O and Ti–O–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).

    Article  CAS  Google Scholar 

  13. Herlihy, D. M. et al. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8, 549–555 (2016).

    Article  CAS  Google Scholar 

  14. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

    Article  CAS  Google Scholar 

  15. Zandi, O. & Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016).

    Article  CAS  Google Scholar 

  16. Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).

    Article  CAS  Google Scholar 

  17. Chen, J., Li, Y. F., Sit, P. & Selloni, A. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. J. Am. Chem. Soc. 135, 18774–18777 (2013).

    Article  CAS  Google Scholar 

  18. Kraack, J. P. & Hamm, P. Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy. Chem. Rev. 117, 10623–10664 (2017).

    Article  CAS  Google Scholar 

  19. Kraack, J. P., Kaech, A. & Hamm, P. Surface enhancement in ultrafast 2D ATR IR spectroscopy at the metal-liquid interface. J. Phys. Chem. C 120, 3350–3359 (2016).

    Article  CAS  Google Scholar 

  20. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012).

    Article  CAS  Google Scholar 

  21. Chen, X., Aschaffenburg, D. J. & Cuk, T. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat. Catal. 2, 820–827 (2019).

    Article  CAS  Google Scholar 

  22. Libuda, J., Meusel, I., Hartmann, J. & Freund, H. J. A molecular beam/surface spectroscopy apparatus for the study of reactions on complex model catalysts. Rev. Sci. Instrum. 71, 4395–4408 (2000).

    Article  CAS  Google Scholar 

  23. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar cells. Sol. Energy Mater. Sol. Cells 225, 111073 (2021).

    Article  CAS  Google Scholar 

  25. Bhattacharya, C. et al. Sustainable nanoplasmon-enhanced photoredox reactions: synthesis, characterization, and applications. Adv. Energy Mater. 10, 2002402 (2020).

    Article  CAS  Google Scholar 

  26. Xu, Y. & Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000).

    Article  CAS  Google Scholar 

  27. Janotti, A., Varley, J. B., Choi, M. & Van de Walle, C. G. Vacancies and small polarons in SrTiO3. Phys. Rev. B 90, 085202 (2014).

    Article  CAS  Google Scholar 

  28. Chen, H. & Umezawa, N. Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3. Phys. Rev. B 90, 035202 (2014).

  29. Rubano, A., Paparo, D., Granozio, F. M., Uccio, U. & Marrucci, L. Blue luminescence of SrTiO3 under intense optical excitation. J. Appl. Phys. 106, 103515 (2009).

    Article  Google Scholar 

  30. Mochizuki, S., Fujishiro, F. & Minami, S. Photoluminescence and reversible photo-induced spectral change of SrTiO3. J. Phys. Condens. Matter 17, 923–948 (2005).

    Article  CAS  Google Scholar 

  31. Schirmer, O. F. O bound small polarons in oxide materials. J. Phys. Condens. Matter 18, R667–R704 (2006).

    Article  CAS  Google Scholar 

  32. Deskins, N. A. & Dupuis, M. Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2009).

    Article  CAS  Google Scholar 

  33. Formal, F. L. et al. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015).

    Article  Google Scholar 

  34. Kafizas, A. et al. Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: a rate law analysis. ACS Catal. 7, 4896–4903 (2017).

    Article  CAS  Google Scholar 

  35. Waegele, M. M., Chen, X., Herlihy, D. M. & Cuk, T. How surface potential determines the kinetics of the first hole transfer of photocatalytic water oxidation. J. Am. Chem. Soc. 136, 10632–10639 (2014).

    Article  CAS  Google Scholar 

  36. Mandal, A., Ramasesha, K., Marco, L. D. & Tokmakoff, A. Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy. J. Chem. Phys. 140, 204508 (2014).

    Article  Google Scholar 

  37. Baiz, C. R., Peng, C. S., Reppert, M. E., Jones, K. C. & Tokmakoff, A. Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution. Analyst 137, 1793–1799 (2012).

    Article  CAS  Google Scholar 

  38. Stewart, G. W. On the early history of the singular value decomposition. SIAM Rev. 35, 551–566 (1993).

    Article  Google Scholar 

  39. Guhl, H., Miller, W. & Reuter, K. Water adsorption and dissociation on SrTiO3 (001) revisited: a density functional theory study. Phys. Rev. B 81, 155455 (2010).

  40. Hinojosa, B. B., Van Cleve, T. & Asthagiri, A. A first-principles study of H2O adsorption and dissociation on the SrTiO3(100) surface. Mol. Simul. 36, 604–617 (2010).

    Article  CAS  Google Scholar 

  41. Holmstrom, A., Spijker, P. & Foster, A. S. The interface of SrTiO2 and H2O from density functional theory molecular dynamics. Proc. R. Soc. A 472, 20160293 (2016).

    Article  CAS  Google Scholar 

  42. Roberts, S. T., Ramasesha, K., Petersen, P. B., Mandal, A. & Tokmakoff, A. Proton transfer in concentrated aqueous hydroxide visualized using ultrafast infrared spectroscopy. J. Phys. Chem. A 115, 3957–3972 (2011).

    Article  CAS  Google Scholar 

  43. Marx, D., Chandra, A. & Tuckerman, M. E. Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem. Rev. 110, 2174–2216 (2010).

    Article  CAS  Google Scholar 

  44. Perakis, F., Widmer, S. & Hamm, P. Two-dimensional infrared spectroscopy of isotope-diluted ice Ih. J. Chem. Phys. 134, 204505 (2011).

    Article  Google Scholar 

  45. De Marco, L. et al. Differences in the vibrational dynamics of H2O and D2O: observation of symmetric and antisymmetric stretching vibrations in heavy water. J. Phys. Chem. Lett. 7, 1769–1774 (2016).

    Article  Google Scholar 

  46. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  CAS  Google Scholar 

  47. Swenson, H. & Stadie, N. P. Langmuir’s theory of adsorption: a centennial review. Langmuir 35, 5409–5426 (2019).

    Article  CAS  Google Scholar 

  48. Cheng, J. & Sprik, M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J. Chem. Theory Comput. 6, 880–889 (2010).

    Article  CAS  Google Scholar 

  49. Sanchez, E. K. et al. Assessment of polishing-related surface damage in silicon carbide. J. Electrochem. Soc. 149, G131–G136 (2002).

    Article  CAS  Google Scholar 

  50. Arnay, I., Rubio-Zuazo, J. & Castro, G. R. Impact of cleaning methods on the structural properties and morphology of SrTiO3 surface. Appl. Surf. Sci. 427, 561–565 (2018).

    Article  CAS  Google Scholar 

  51. Feng, Y., Vinogradov, I. & Ge, N.-H. General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy. Opt. Express 25, 26262–26279 (2017).

    Article  CAS  Google Scholar 

  52. Feng, Y., Vinogradov, I. & Ge, N.-H. Optimized noise reduction scheme for heterodyne spectroscopy using array detectors. Opt. Express 27, 20323–20346 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental work was supported by the Director, Office of Science, Office of Basic Energy Sciences and by the Division of Chemical Sciences, Geosciences and Biosciences of the US Department of Energy at the Renewable and Sustainable Energy Institute (RASEI; Boulder, CO) under contract no. DE-SC0018939 awarded to T.C. This included full support for one postdoctoral fellow and one graduate student, and partial support for another graduate student. We thank C. D. Pemmaraju and H. Frei for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.C. conceived of the project, managed the data collection process and wrote the manuscript with the input of all authors. I.V., S.S. and H.L. constructed the transient set-up and collected the transient data. M.P. helped collect the transient data on the highly doped samples. I.V. and A.M. processed the results and analysed the data using principal component analyses. T.C., with input from J.R., developed the theoretical model. J.R. placed the results in the context of previous theoretical models.

Corresponding authors

Correspondence to Aritra Mandal or Tanja Cuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Bert Weckhuysen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Sections I–X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, I., Singh, S., Lyle, H. et al. Free energy difference to create the M-OH* intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy. Nat. Mater. 21, 88–94 (2022). https://doi.org/10.1038/s41563-021-01118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01118-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing