Skip to main content

Advertisement

Log in

Transthyretin and retinol-binding protein as discriminators of diabetic retinopathy in type 1 diabetes mellitus

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM), which is still a major reason for blindness. Transthyretin (TTR) and retinol-binding protein (RBP) are thought to be related to the pathogenesis both in T2DM and T1DM. We aimed to investigate the association between serum levels of TTR, RBP, RBP/TTR ratio, and DR.

Methods

This retrospective study involved 188 T1DM inpatients divided into two groups: patients with DR (n = 95) and patients without DR (n = 93). Data of serum levels on lipids and inflammation were collected. Multiple logistic regression analysis was performed to research the association between TTR, RBP, RBP/TTR, and diabetic retinopathy in T1DM.

Results

Compared with patients without DR, those with DR have a higher level of TTR (207 versus 195 mg/L, p = 0.034) and RBP4 (36.85 versus 25.68 mg/L, p < 0.001). Significant differences were also observed between two groups with respect to body mass index (BMI), blood pressure (BP), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), homocysteine, apolipoprotein B (APOB), leucocyte, monocyte, neutrophil, and uric acid (p < 0.05 for all). TTR, RBP, and RBP/TTR were positively correlated with BP, BMI, TG, LDL, homocysteine, APOB, and uric acid. A multivariate logistic regression model revealed individuals with RBP4 level in the highest quartile had 58.95 times higher risk of developing diabetic retinopathy than those in the lowest quartile.

Conclusions

In conclusion, TTR, RBP, and RBP/TTR ratio are risk factors of DR in T1DM. They are potential markers and targets for diagnosis and treatment of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  Google Scholar 

  2. Ning G, Bloomgarden Z (2013) Diabetes in China: prevalence, diagnosis, and control. J Diabetes 5(4):372

    Article  Google Scholar 

  3. Thomas RL, Dunstan FD, Luzio SD, Chowdhury SR, North RV, Hale SL, Gibbins RL, Owens DR (2015) Prevalence of diabetic retinopathy within a national diabetic retinopathy screening service. Br J Ophthalmol 99(1):64–68

    Article  Google Scholar 

  4. Romero-Aroca P, Navarro-Gil R, Valls-Mateu A, Sagarra-Alamo R, Moreno-Ribas A, Soler N (2017) Differences in incidence of diabetic retinopathy between type 1 and 2 diabetes mellitus: a nine-year follow-up study. Br J Ophthalmol 101(10):1346–1351

    Article  Google Scholar 

  5. Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS (2019) Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 73(22):2872–2891

    Article  CAS  Google Scholar 

  6. Nilsson SF, Rask L, Peterson PA (1975) Studies on thyroid hormone-binding proteins. II. Binding of thyroid hormones, retinol-binding protein, and fluorescent probes to prealbumin and effects of thyroxine on prealbumin subunit self association. J Biol Chem 250(21):8554–8563

  7. Yoshida A, Matsutani Y, Fukuchi Y, Saito K, Naito M (2006) Analysis of the factors contributing to serum retinol binding protein and transthyretin levels in Japanese adults. J Atheroscler Thromb 13(4):209–215

    Article  CAS  Google Scholar 

  8. Itoh N, Hanafusa T, Miyagawa J, Tamura S, Inada M, Kawata S, Kono N, Tarui S (1992) Transthyretin (prealbumin) in the pancreas and sera of newly diagnosed type I (insulin-dependent) diabetic patients. J Clin Endocrinol Metab 74(6):1372–1377

    CAS  PubMed  Google Scholar 

  9. Refai E, Dekki N, Yang SN, Imreh G, Cabrera O, Yu L, Yang G, Norgren S, Rössner SM, Inverardi L et al (2005) Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling. Proc Natl Acad Sci USA 102(47):17020–17025

    Article  CAS  Google Scholar 

  10. Wakabayashi I, Marumo M, Nonaka D, Lee LJ, Mukai J, Ohki M, Tanaka K, Uchida K (2017) Cysteinylated transthyretin as a discriminator of cardiovascular risk in patients with diabetes mellitus. Clinica Chimica Acta Int J Clin Chem 470:46–50

  11. Kingsbury JS, Laue TM, Klimtchuk ES, Théberge R, Costello CE, Connors LH (2008) The modulation of transthyretin tetramer stability by cysteine 10 adducts and the drug diflunisal. Direct analysis by fluorescence-detected analytical ultracentrifugation. J Biol Chem 283(18):11887–11896

  12. Leri M, Rebuzzini P, Caselli A, Luti S, Natalello A, Giorgetti S, Marchese L, Garagna S, Stefani M, Paoli P et al (2020) S-Homocysteinylation effects on transthyretin: worsening of cardiomyopathy onset. Biochimica et Biophysica Acta General Sub 1864(1):129453

  13. Arvanitis M, Koch CM, Chan GG, Torres-Arancivia C, LaValley MP, Jacobson DR, Berk JL, Connors LH, Ruberg FL (2017) Identification of transthyretin cardiac amyloidosis using serum retinol-binding protein 4 and a clinical prediction model. JAMA Cardiol 2(3):305–313

    Article  Google Scholar 

  14. Pullakhandam R, Palika R, Ghosh S, Reddy GB (2012) Contrasting effects of type 2 and type 1 diabetes on plasma RBP4 levels: the significance of transthyretin. IUBMB Life 64(12):975–982

    Article  CAS  Google Scholar 

  15. Graham TE, Yang Q, Blüher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U et al (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354(24):2552–2563

    Article  CAS  Google Scholar 

  16. Klöting N, Graham TE, Berndt J, Kralisch S, Kovacs P, Wason CJ, Fasshauer M, Schön MR, Stumvoll M, Blüher M et al (2007) Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 6(1):79–87

    Article  Google Scholar 

  17. Forga L, Bolado F, Goñi MJ, Tamayo I, Ibáñez B, Prieto C (2016) Low serum levels of prealbumin, retinol binding protein, and retinol are frequent in adult type 1 diabetic patients. J Diabetes Res 2016:2532108

    PubMed  PubMed Central  Google Scholar 

  18. Baena RM, Campoy C, Bayés R, Blanca E, Fernández JM, Molina-Font JA (2002) Vitamin A, retinol binding protein and lipids in type 1 diabetes mellitus. Eur J Clin Nutr 56(1):44–50

    Article  CAS  Google Scholar 

  19. Pavkov ME, Harding JL, Chou CF, Saaddine JB (2019) Prevalence of diabetic retinopathy and associated mortality among diabetic adults with and without chronic kidney disease. Am J Ophthalmol 198:200–208

    Article  Google Scholar 

  20. Song P, Yu J, Chan KY, Theodoratou E, Rudan I (2018) Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis. J Global Health 8(1):010803

  21. Pan HZ, Zhang H, Chang D, Li H, Sui H (2008) The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol 92(4):548–551

    Article  Google Scholar 

  22. Brazionis L, Rowley K Sr, Itsiopoulos C, Harper CA, O’Dea K (2008) Homocysteine and diabetic retinopathy. Diabetes Care 31(1):50–56

    Article  CAS  Google Scholar 

  23. Tawfik A, Mohamed R, Elsherbiny NM, DeAngelis MM, Bartoli M, Al-Shabrawey M (2019) Homocysteine: a potential biomarker for diabetic retinopathy. J Clin Med 8(1)

  24. Hofmann MA, Kohl B, Zumbach MS, Borcea V, Bierhaus A, Henkels M, Amiral J, Fiehn W, Ziegler R, Wahl P et al (1997) Hyperhomocyst(e)inemia and endothelial dysfunction in IDDM. Diabetes Care 20(12):1880–1886

    Article  CAS  Google Scholar 

  25. Moore P, El-sherbeny A, Roon P, Schoenlein PV, Ganapathy V, Smith SB (2001) Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res 73(1):45–57

    Article  CAS  Google Scholar 

  26. Liang CC, Lin PC, Lee MY, Chen SC, Shin SJ, Hsiao PJ, Lin KD, Hsu WH (2016) Association of serum uric acid concentration with diabetic retinopathy and albuminuria in Taiwanese patients with type 2 diabetes mellitus. Int J Mol Sci 17(8)

  27. Zhu DD, Wang YZ, Zou C, She XP, Zheng Z (2018) The role of uric acid in the pathogenesis of diabetic retinopathy based on Notch pathway. Biochem Biophys Res Commun 503(2):921–929

    Article  CAS  Google Scholar 

  28. Schröder S, Palinski W, Schmid-Schönbein GW (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 139(1):81–100

    PubMed  PubMed Central  Google Scholar 

  29. Owen CA, Campbell MA, Sannes PL, Boukedes SS, Campbell EJ (1995) Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol 131(3):775–789

    Article  CAS  Google Scholar 

  30. Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS (2019) Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Diabetologia 62(12):2365–2374

    Article  CAS  Google Scholar 

  31. Shao J, Yao Y (2016) Transthyretin represses neovascularization in diabetic retinopathy. Mol Vis 22:1188–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao J, Fan G, Yin X, Gu Y, Wang X, Xin Y, Yao Y (2019) A novel transthyretin/STAT4/miR-223–3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy. Mol Cellular Endocrinol 498:110541

  33. Shao J, Yin Y, Yin X, Ji L, Xin Y, Zou J, Yao Y (2017) Transthyretin exerts pro-apoptotic effects in human retinal microvascular endothelial cells through a GRP78-dependent pathway in diabetic retinopathy. Cellular Physiol Biochem Int J Exper Cellular Physiol Biochem Pharmacol 43(2):788–800

    Article  CAS  Google Scholar 

  34. Shao J, Xin Y, Li R, Fan Y (2011) Vitreous and serum levels of transthyretin (TTR) in high myopia patients are correlated with ocular pathologies. Clin Biochem 44(8–9):681–685

    Article  CAS  Google Scholar 

  35. Shao J, Xin Y, Yao Y (2011) Correlation of misfolded transthyretin in abnormal vitreous and high myopia related ocular pathologies. Clinica Chimica Acta Int J Clin Chem 412(23–24):2117–2121

  36. Shao J, Xin Y, Yao Y, Zhu J (2013) Functional analysis of misfolded transthyretin extracted from abnormal vitreous with high myopia related ocular pathologies. Clinica Chimica Acta Int J Clin Chem 415:20–24

  37. Du M, Martin A, Hays F, Johnson J, Farjo RA, Farjo KM (2017) Serum retinol-binding protein-induced endothelial inflammation is mediated through the activation of toll-like receptor 4. Mol Vis 23:185–197

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Manolescu DC, Sima A, Bhat PV (2010) All-trans retinoic acid lowers serum retinol-binding protein 4 concentrations and increases insulin sensitivity in diabetic mice. J Nutr 140(2):311–316

    Article  CAS  Google Scholar 

  39. Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X (2011) Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice. Biochem Biophys Acta 1811(12):1045–1053

    CAS  PubMed  Google Scholar 

  40. Kelly KR, Kashyap SR, O’Leary VB, Major J, Schauer PR, Kirwan JP (2010) Retinol-binding protein 4 (RBP4) protein expression is increased in omental adipose tissue of severely obese patients. Obesity (Silver Spring, Md) 18(4):663–666

    Article  CAS  Google Scholar 

  41. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362

    Article  CAS  Google Scholar 

  42. Basu TK, Tze WJ, Leichter J (1989) Serum vitamin A and retinol-binding protein in patients with insulin-dependent diabetes mellitus. Am J Clin Nutr 50(2):329–331

    Article  CAS  Google Scholar 

  43. Basu TK, Basualdo C (1997) Vitamin A homeostasis and diabetes mellitus. Nutrition 13(9):804–806

    Article  CAS  Google Scholar 

  44. Rostamkhani H, Mellati AA, Tabaei BS, Alavi M, Mousavi SN (2019) Association of Serum zinc and vitamin A levels with severity of retinopathy in type 2 diabetic patients: a cross-sectional study. Biol Trace Elem Res 192(2):123–128

    Article  CAS  Google Scholar 

  45. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX (2012) Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 32(24):5103–5115

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Shandong Key R&D Program (Grant No. 2017GSF18129), the National Key Research and Development Plan (Grant No. 2017YFC1309805), the National Natural Science Foundation of China (Grant No. 82170860), the Special Fund for Clinical Medical Science Research of the Chinese Medical Association (Grant No. 12020330323), and the Medical Quality Management Project of Shandong Province (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinli Zhou.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

This study was in accordance with the Declaration of Helsinki and has been approved by the Ethics Committee of Shandong Provincial Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Shi, Y., Yang, J. et al. Transthyretin and retinol-binding protein as discriminators of diabetic retinopathy in type 1 diabetes mellitus. Int Ophthalmol 42, 1041–1049 (2022). https://doi.org/10.1007/s10792-021-02088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02088-2

Keywords

Navigation