Skip to main content
Log in

99mTechnetium-labeled cardiac scintigraphy for suspected amyloidosis: a review of current and future directions

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiac amyloidosis (CA) is an underdiagnosed form of restrictive cardiomyopathy leading to a rapid progression into heart failure. Evaluation of CA requires a multimodality approach making use of echocardiography, cardiac magnetic imaging, and nuclear imaging. Technetium (Tc)-labeled cardiac scintigraphy has witnessed a resurgence in its application for the workup of CA. Advancements in disease-modifying therapies have fueled the rapid adoption of cardiac scintigraphy using bone tracers and the need for transformative novel studies. The goal of this review is to present diagnostic utility, currently recommended protocols, as well as a glimpse into the rapid evolution of Tc-labeled cardiac scintigraphy in the diagnosis of CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kyle RA, Gertz MA (1995) Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol 32(1):45–59. Accessed 16 Jun 2021

  2. Sipe JD, Benson MD, Buxbaum JN et al (2016) Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification international society of amyloidosis 2016 nomenclature guidelines. Amyloid 23(4):209–213. https://doi.org/10.1080/13506129.2016.1257986. Accessed 16 Jun 2021

  3. Benson MD, Buxbaum JN, Eisenberg DS et al (2018) Amyloid nomenclature 2018: recommendations by the international society of amyloidosis (ISA) nomenclature committee. Amyloid 25(4):215–219. https://doi.org/10.1080/13506129.2018.1549825. Accessed 16 Jun 2021

  4. Siddiqi OK, Ruberg FL (2018) Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med 28(1):10–21. https://doi.org/10.1016/j.tcm.2017.07.004. Accessed 16 Jun 2021

  5. Muchtar E, Gertz MA, Kumar SK et al (2017) Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood 129(15):2111–2119. https://doi.org/10.1182/blood-2016-11-751628. Accessed 16 Jun 2021

  6. Gertz MA, Benson MD, Dyck PJ, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66(21):2451-2466. https://doi.org/10.1016/j.jacc.2015.09.075Accessed 6 Oct 2021

  7. Dorbala S, Ando Y, Bokhari S et al (2019) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol 26(6):2065–2123. https://doi.org/10.1007/s12350-019-01760-6. Accessed 2 Jun 2021

  8. Gillmore JD, Maurer MS, Falk RH et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412. https://doi.org/10.1161/CIRCULATIONAHA.116.021612. Accessed 16 Jun 2021

  9. Ali A, Turner DA, Rosenbush SW, Fordham EW (1981) Bone scintigram in cardiac amyloidosis: a case report. Clin Nucl Med 6(3):105–108. https://doi.org/10.1097/00003072-198103000-00003. Accessed 28 Jun 2021

  10. Schiff S, Bateman T, Moffatt R, Davidson R, Berman D (1982) Diagnostic considerations in cardiomyopathy: unique scintigraphic pattern of diffuse biventricular technetium-99m-pyrophosphate uptake in amyloid heart disease. Am Heart J 103(4 Pt 1):562–563. https://doi.org/10.1016/0002-8703(82)90343-x. Accessed 28 Jun 2021 

  11. Sobol SM, Brown JM, Bunker SR, Patel J, Lull RJ (1982) Noninvasive diagnosis of cardiac amyloidosis by technetium-99m-pyrophosphate myocardial scintigraphy. Am Heart J 103(4 Pt 1):563–566. https://doi.org/10.1016/0002-8703(82)90344-1. Accessed 28 Jun 2021

  12. Shih WJ, DeLand FH, Domstad PA, Stahr BJ, Powell RD, Yoneda K (1985) Scintigraphic findings in primary amyloidosis of the heart and stomach. Clin Nucl Med 10(7):466–467. https://doi.org/10.1097/00003072-198507000-00003. Accessed 28 Jun 2021

  13. Ptacin MJ, Bamrah V, Duthie E (1985) Technetium 99m-pyrophosphate scintigraphy in amyloid cardiomyopathy. Wis Med J 84:25–27

  14. Li CK, Rabinovitch MA, Juni JE et al (1985) Scintigraphic characterization of amyloid cardiomyopathy. Clin Nucl Med 10(3):156–159. https://doi.org/10.1097/00003072-198503000-00004. Accessed 28 Jun 2021

  15. Janssen S, van Rijswijk MH, Piers DA, de Jong GM (1984) Soft-tissue uptake of 99mTc-diphosphonate in systemic AL amyloidosis. Eur J Nucl Med 9(12):538–541. https://doi.org/10.1007/BF00256851. Accessed 28 Jun 2021

  16. Braun SD, Lisbona R, Novales-Diaz JA, Sniderman A (1979) Myocardial uptake of 99mTc-phosphate tracer in amyloidosis. Clin Nucl Med 4(6):244–245. https://doi.org/10.1097/00003072-197906000-00008. Accessed 16 Jun 2021

  17. Falk RH, Lee VW, Rubinow A, Hood WB, Cohen AS (1983) Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am J Cardiol 51(5):826–830. https://www.sciencedirect.com/science/article/pii/S0002914983801404. https://doi.org/10.1016/S0002-9149(83)80140-4. Accessed 16 Jun 2021

  18. Wizenberg TA, Muz J, Sohn YH, Samlowski W, Weissler AM (1982) Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis. Am Heart J 103(4 Pt 1):468–473. https://doi.org/10.1016/0002-8703(82)90331-3. Accessed 16 Jun 2021

  19. Schiff S, Bateman T, Moffatt R, Davidson R, Berman D (1982) Diagnostic considerations in cardiomyopathy: Unique scintigraphic pattern of diffuse biventricular technetium-99m-pyrophosphate uptake in amyloid heart disease. Am Heart J 103(4 Pt 1):562–563. https://doi.org/10.1016/0002-8703(82)90343-x. Accessed 16 Jun 2021 

  20. Gertz MA, Brown ML, Hauser MF, Kyle RA (1987) Utility of technetium tc 99m pyrophosphate bone scanning in cardiac amyloidosis. Arch Intern Med 147(6):1039–1044. https://doi.org/10.1001/archinte.1987.00370060035007. Accessed 16 Jun 2021

    Article  CAS  PubMed  Google Scholar 

  21. Perugini E, Guidalotti PL, Salvi F et al (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46(6):1076–1084. https://doi.org/10.1016/j.jacc.2005.05.073. Accessed 8 Jun 2021

  22. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS (2013) (99m)tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 6(2):195–201. https://doi.org/10.1161/CIRCIMAGING.112.000132. Accessed 8 Jun 2021

  23. Galat A, Rosso J, Guellich A et al (2015) Usefulness of (99m)tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 22(4):210–220. https://doi.org/10.3109/13506129.2015.1072089. Accessed 30 Jun 2021

  24. Cappelli F, Gallini C, Di Mario C et al (2019) Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol 26(2):497–504. https://doi.org/10.1007/s12350-017-0922-z. Accessed 30 Jun 2021 

  25. Rapezzi C, Quarta CC, Guidalotti PL et al (2011) Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging 38(3):470–478. https://doi.org/10.1007/s00259-010-1642-7. Accessed 16 Jun 2021

  26. Aljaroudi WA, Desai MY, Tang WHW, Phelan D, Cerqueira MD, Jaber WA (2014) Role of imaging in the diagnosis and management of patients with cardiac amyloidosis: State of the art review and focus on emerging nuclear techniques. J Nucl Cardiol 21(2):271–283. https://doi.org/10.1007/s12350-013-9800-5. Accessed 13 Jul 2021 

  27. Bokhari S, Morgenstern R, Weinberg R et al (2018) Standardization of 99mTechnetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J Nucl Cardiol 25(1):181–190. https://doi.org/10.1007/s12350-016-0610-4. Accessed 29 Jun 2021

  28. ASNC cardiac amyloidosis practice points. 99mTechnetium pyrophosphate imaging for transthyretin cardiac amyloidosis. https://www.asnc.org/files/19110%20ASNC%20Amyloid%20Practice%20Points%20WEB(2).pdf. Accessed 2 June 2021

  29. Dorbala S, Ando Y, Bokhari S et al (2020) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2-diagnostic criteria and appropriate utilization. J Nucl Cardiol 27(2):659–673. https://doi.org/10.1007/s12350-019-01761-5. Accessed 2 Jun 2021

  30. ASNC Practice Points (2016) 99mTechnetium-pyrophosphate imaging for transthyretin cardiac amyloidosis. https://www.asnc.org/Files/Practice%20Resources/Practice%20Points/ASNC%20Practice%20Point-99mTechnetiumPyrophosphateImaging2016.pdf. Accessed 2 Jun 2021

  31. Castano A, Haq M, Narotsky DL et al (2016) Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 1(8):880–889. https://doi.org/10.1001/jamacardio.2016.2839. Accessed 29 Jun 2021

  32. Coutinho MCA, Cortez-Dias N, Cantinho G et al (2020) The sensitivity of DPD scintigraphy to detect transthyretin cardiac amyloidosis in V30M mutation depends on the phenotypic expression of the disease. Amyloid 27(3):174–183. https://doi.org/10.1080/13506129.2020.1744553. Accessed 17 Aug 2021

    Article  CAS  Google Scholar 

  33. Pilebro B, Suhr OB, Näslund U, Westermark P, Lindqvist P, Sundström T (2016) (99m)tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci 121(1):17–24. https://doi.org/10.3109/03009734.2015.1122687. Accessed 17 Aug 2021 

  34. Musumeci MB, Cappelli F, Russo D et al (2020) Low sensitivity of bone scintigraphy in detecting Phe64Leu mutation-related transthyretin cardiac amyloidosis. JACC Cardiovasc Imaging 13(6):1314–1321. https://doi.org/10.1016/j.jcmg.2019.10.015. Accessed 17 Aug 2021

  35. Takasone K, Katoh N, Takahashi Y et al (2020) Non-invasive detection and differentiation of cardiac amyloidosis using 99mTc-pyrophosphate scintigraphy and 11C-pittsburgh compound B PET imaging. Amyloid 27(4):266–274. https://doi.org/10.1080/13506129.2020.1798223. Accessed 17 Aug 2021

  36. Pilebro B, Arvidsson S, Lindqvist P et al (2018) Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 25(1):240–248. https://doi.org/10.1007/s12350-016-0638-5. Accessed 17 Aug 2021 

  37. Hutt DF, Fontana M, Burniston M et al (2017) Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging 18(12):1344–1350. https://doi.org/10.1093/ehjci/jew325. Accessed 6 Jul 2021

  38. Rapezzi C, Quarta CC, Guidalotti PL et al (2011) Role of (99m)tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging 4(6):659–670. https://doi.org/10.1016/j.jcmg.2011.03.016. Accessed 6 Jul 2021

  39. Kristen AV, Haufe S, Schonland SO et al (2013) Skeletal scintigraphy indicates disease severity of cardiac involvement in patients with senile systemic amyloidosis. Int J Cardiol 164(2):179–184. https://doi.org/10.1016/j.ijcard.2011.06.123. Accessed 9 Jul 2021

  40. Vranian MN, Sperry BW, Hanna M et al (2018) Technetium pyrophosphate uptake in transthyretin cardiac amyloidosis: associations with echocardiographic disease severity and outcomes. J Nucl Cardiol 25(4):1247–1256. https://doi.org/10.1007/s12350-016-0768-9. Accessed 9 Jul 2021

  41. Sperry BW, Sato K, Phelan D et al (2019) Regional variability in longitudinal strain across vendors in patients with cardiomyopathy due to increased left ventricular wall thickness. Circ Cardiovasc Imaging 12(8):e008973. https://doi.org/10.1161/CIRCIMAGING.119.008973. Accessed 12 Jul 2021

  42. Harb SC, Haq M, Flood K et al (2017) National patterns in imaging utilization for diagnosis of cardiac amyloidosis: a focus on Tc99m-pyrophosphate scintigraphy. J Nucl Cardiol 24(3):1094–1097. https://doi.org/10.1007/s12350-016-0478-3. Accessed 5 Jul 2021

  43. Masri A, Bukhari S, Ahmad S et al (2020) Efficient 1-hour technetium-99 m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging 13(2):e010249. https://doi.org/10.1161/CIRCIMAGING.119.010249. Accessed 6 Jul 2021 

  44. Sperry BW, Burgett E, Bybee KA et al (2020) Technetium pyrophosphate nuclear scintigraphy for cardiac amyloidosis: imaging at 1 vs 3 hours and planar vs SPECT/CT. J Nucl Cardiol 27(5):1802–1807. https://doi.org/10.1007/s12350-020-02139-8. Accessed 6 Jul 2021 

  45. Santarelli MF, Genovesi D, Positano V et al (2020) Cardiac amyloidosis detection by early bisphosphonate (99mTc-HMDP) scintigraphy. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02239-5. Accessed 12 Jul 2021

  46. Galat A, Van der Gucht A, Guellich A et al (2017) Early phase 99Tc-HMDP scintigraphy for the diagnosis and typing of cardiac amyloidosis. JACC Cardiovasc Imaging 10(5):601–603. https://doi.org/10.1016/j.jcmg.2016.05.007. Accessed 12 Jul 2021 

  47. Castaño A, DeLuca A, Weinberg R et al (2016) Serial scanning with technetium pyrophosphate (99mTc-PYP) in advanced ATTR cardiac amyloidosis. J Nucl Cardiol 23(6):1355–1363. https://doi.org/10.1007/s12350-015-0261-x. Accessed 6 Jul 2021

  48. Castaño A, Bokhari S, Maurer MS (2015) Unveiling wild-type transthyretin cardiac amyloidosis as a significant and potentially modifiable cause of heart failure with preserved ejection fraction. Eur Heart J 36(38):2595–2597. https://doi.org/10.1093/eurheartj/ehv328. Accessed 6 Jul 2021 

  49. Ramsay SC, Cuscaden C (2020) The current status of quantitative SPECT/CT in the assessment of transthyretin cardiac amyloidosis. J Nucl Cardiol 27(5):1464–1468. https://doi.org/10.1007/s12350-019-01935-1. Accessed 12 Jul 2021

  50. Bailey DL, Willowson KP (2013) An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 54(1):83–89. https://doi.org/10.2967/jnumed.112.111476. Accessed 6 Jul 2021 

  51. Ross JC, Hutt DF, Burniston M et al (2018) Quantitation of 99mTc-DPD uptake in patients with transthyretin-related cardiac amyloidosis. Amyloid 25(3):203–210. https://doi.org/10.1080/13506129.2018.1520087. Accessed 6 Jul 2021

    Article  CAS  PubMed  Google Scholar 

  52. Scully PR, Morris E, Patel KP et al (2020) DPD quantification in cardiac amyloidosis: a novel imaging biomarker 13(6):1353–1363. https://qmro.qmul.ac.uk/xmlui/handle/123456789/65125

  53. Caobelli F, Braun M, Haaf P, Wild D, Zellweger MJ (2020) Quantitative 99mTc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: Feasibility and correlation with visual scores. J Nucl Cardiol 27(5):1456–1463. https://doi.org/10.1007/s12350-019-01893-8. Accessed 6 Jul 2021

  54. Ramsay SC, Lindsay K, Fong W, Patford S, Younger J, Atherton J (2018) Tc-HDP quantitative SPECT/CT in transthyretin cardiac amyloid and the development of a reference interval for myocardial uptake in the non-affected population. Eur J Hybrid Imaging 2(1):17. https://doi.org/10.1186/s41824-018-0035-1. Accessed 6 Jul 2021

  55. Dorbala S, Park M, Cuddy S et al (2021) Absolute quantitation of cardiac 99mTc-pyrophosphate using cadmium-zinc-telluride-based SPECT/CT. J Nucl Med 62(5):716–722. https://doi.org/10.2967/jnumed.120.247312. Accessed 7 Jul 2021 

  56. Bellevre D, Bailliez A, Delelis F et al (2020) Quantitation of myocardial 99mTc-HMDP uptake with new SPECT/CT cadmium zinc telluride (CZT) camera in patients with transthyretin-related cardiac amyloidosis: ready for clinical use? J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02274-2. Accessed 12 Jul 2021

  57. Hutton BF, Erlandsson K, Thielemans K (2018) Advances in clinical molecular imaging instrumentation. Clinical and Translational Imaging 6(1):31–45. https://doi.org/10.1007/s40336-018-0264-0.

    Article  Google Scholar 

  58. Dorbala S, Kijewski MF, Park M (2020) Quantitative bone-avid tracer SPECT/CT for cardiac amyloidosis: A crucial step forward. JACC Cardiovasc Imaging 13(6):1364–1367. https://doi.org/10.1016/j.jcmg.2020.05.005. Accessed 26 Jun 2021

  59. Kudo T, Imakhanova A (2020) Quantification of amyloid deposition using bone scan agents. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02340-9. Accessed 23 Jul 2021 

  60. Tamarappoo B, Otaki Y, Manabe O et al (2020) Simultaneous tc-99m PYP/tl-201 dual-isotope SPECT myocardial imaging in patients with suspected cardiac amyloidosis. J Nucl Cardiol 27(1):28–37. https://doi.org/10.1007/s12350-019-01753-5. Accessed 8 Jul 2021

  61. Cuddy S, Dorbala S, Di Carli MF (2020) Imaging of cardiac amyloidosis: will this become a unique application for dual-isotope imaging? J Nucl Cardiol 27(1):38–40. https://doi.org/10.1007/s12350-019-01754-4. Accessed 8 Jul 2021 

  62. Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379(1):22–31. https://doi.org/10.1056/NEJMoa1716793. Accessed 21 Jun 2021

    Article  CAS  PubMed  Google Scholar 

  63. Adams D, Gonzalez-Duarte A, O’Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379(1):11–21. https://doi.org/10.1056/NEJMoa1716153. Accessed 21 Jun 2021 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human and animal participants

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, J.M., Ahmed, A.I., Han, Y. et al. 99mTechnetium-labeled cardiac scintigraphy for suspected amyloidosis: a review of current and future directions. Heart Fail Rev 27, 1493–1503 (2022). https://doi.org/10.1007/s10741-021-10174-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10174-x

Keywords

Navigation