Skip to main content
Log in

64Cu-labeled daratumumab F(ab′)2 fragment enables early visualization of CD38-positive lymphoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Abnormal CD38 expression in some hematologic malignancies, including lymphoma, has made it a biomarker for targeted therapies. Daratumumab (Dara) is the first FDA-approved CD38-specific monoclonal antibody, enabling successfully immunoPET imaging over the past years. Radiolabeled Dara however has a long blood circulation and delayed tumor uptake which can limit its applications. The focus of this study is to develop 64Cu-labeled Dara-F(ab′)2 for the visualization of CD38 in lymphoma models.

Methods

F(ab′)2 fragment was prepared from Dara using an IdeS enzyme and purified with Protein A beads. Western blotting, flow cytometry, and surface plasmon resonance (SPR) were performed for in vitro assay. Probes were labeled with 64Cu after the chelation of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Small animal PET imaging and quantitative analysis were performed after injection of 64Cu-labeled Dara-F(ab′)2, IgG-F(ab′)2, and Dara for evaluation in lymphoma models.

Results

Flow cytometry and SPR assay proved the specific binding ability of Dara-F(ab′)2 and NOTA-Dara-F(ab′)2 in vitro. Radiolabeling yield of [64Cu]Cu-NOTA-Dara-F(ab′)2 was over 90% and with a specific activity of 4.0 ± 0.6 × 103 MBq/μmol (n = 5). PET imaging showed [64Cu]Cu-NOTA-Dara-F(ab′)2 had a rapid and high tumor uptake as early as 2 h (6.9 ± 1.2%ID/g) and peaked (9.5 ± 0.7%ID/g) at 12 h, whereas [64Cu]Cu-NOTA-Dara reached its tumor uptake peaked at 48 h (8.3 ± 1.4%ID/g, n = 4). In comparison, IgG-F(ab′)2 and HBL-1 control groups found no noticeable tumor uptake. [64Cu]Cu-NOTA-Dara-F(ab′)2 had significantly lower uptake in blood pool, bone, and muscle than [64Cu]Cu-NOTA-Dara and its tumor-to-blood and tumor-to-muscle ratios were significantly higher than controls.

Conclusions

[64Cu]Cu-NOTA-Dara-F(ab′)2 showed a rapid and high tumor uptake in CD38-positive lymphoma models with favorable imaging contrast, showing its promise as a potential PET imaging agent for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68. https://doi.org/10.1200/JCO.2013.54.8800.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hogan KA, Chini CCS, Chini EN. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front Immunol. 2019;10:1187. https://doi.org/10.3389/fimmu.2019.01187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–19. https://doi.org/10.1056/NEJMoa1506348.

    Article  CAS  PubMed  Google Scholar 

  4. Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res. 2017;23:4290–300. https://doi.org/10.1158/1078-0432.CCR-16-3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016;9:51. https://doi.org/10.1186/s13045-016-0283-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calabretta E, Carlo-Stella C. The many facets of CD38 in lymphoma: from tumor-microenvironment cell interactions to acquired resistance to immunotherapy. Cells. 2020;9. doi:https://doi.org/10.3390/cells9040802.

  7. Viola D, Dona A, Caserta E, Troadec E, Besi F, McDonald T, et al. Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia. 2021;35:189–200. https://doi.org/10.1038/s41375-020-0810-4.

    Article  CAS  PubMed  Google Scholar 

  8. Pandit-Taskar N. Functional imaging methods for assessment of minimal residual disease in multiple myeloma: current status and novel ImmunoPET based methods. Semin Hematol. 2018;55:22–32. https://doi.org/10.1053/j.seminhematol.2018.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barrington SF, Trotman J. The role of PET in the first-line treatment of the most common subtypes of non-Hodgkin lymphoma. The Lancet Haematology. 2021;8:e80–93. https://doi.org/10.1016/s2352-3026(20)30365-3.

    Article  PubMed  Google Scholar 

  10. Borra A, Morbelli S, Zwarthoed C, Bianchi A, Bergesio F, Chauvie S, et al. Dual-point FDG-PET/CT for treatment response assessment in Hodgkin lymphoma, when an FDG-avid lesion persists after treatment. Am J Nucl Med Mol Imaging. 2019;9:176–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jamet B, Bailly C, Carlier T, Touzeau C, Nanni C, Zamagni E, et al. Interest of pet imaging in multiple myeloma. Front Med. 2019;6:69. https://doi.org/10.3389/fmed.2019.00069.

    Article  Google Scholar 

  12. Kang L, Jiang D, Ehlerding EB, Barnhart TE, Ni D, Engle JW, et al. Noninvasive trafficking of brentuximab vedotin and PET imaging of CD30 in lung cancer murine models. Mol Pharm. 2018;15:1627–34. https://doi.org/10.1021/acs.molpharmaceut.7b01168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang L, Jiang D, England CG, Barnhart TE, Yu B, Rosenkrans ZT, et al. ImmunoPET imaging of CD38 in murine lymphoma models using (89)Zr-labeled daratumumab. Eur J Nucl Med Mol Imaging. 2018;45:1372–81. https://doi.org/10.1007/s00259-018-3941-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120:3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang L, Li C, Rosenkrans ZT, Engle JW, Wang R, Jiang D, et al. Noninvasive evaluation of CD20 expression using (64)Cu-labeled F(ab’)2 fragments of obinutuzumab in lymphoma. J Nucl Med. 2021;62:372–8. https://doi.org/10.2967/jnumed.120.246595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ulaner GA, Sobol NB, O’Donoghue JA, Kirov AS, Riedl CC, Min R, et al. CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging. Radiology. 2020;295:606–15. https://doi.org/10.1148/radiol.2020192621.

    Article  PubMed  Google Scholar 

  17. Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–81.

    CAS  PubMed  Google Scholar 

  18. Luo H, Hernandez R, Hong H, Graves SA, Yang Y, England CG, et al. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proc Natl Acad Sci USA. 2015;112:12806–11. https://doi.org/10.1073/pnas.1509667112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hong H, Zhang Y, Orbay H, Valdovinos HF, Nayak TR, Bean J, et al. Positron emission tomography imaging of tumor angiogenesis with a (61/64)Cu-labeled F(ab’)(2) antibody fragment. Mol Pharm. 2013;10:709–16. https://doi.org/10.1021/mp300507r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang L, Li C, Rosenkrans ZT, Huo N, Chen Z, Ehlerding EB, et al. CD38-targeted theranostics of lymphoma with (89)Zr/(177)Lu-labeled daratumumab. Adv Sci (Weinh). 2021;8:2001879. https://doi.org/10.1002/advs.202001879.

    Article  CAS  Google Scholar 

  21. Li C, Kang L, Fan K, Ferreira CA, Becker KV, Huo N, et al. ImmunoPET of CD146 in orthotopic and metastatic breast cancer models. Bioconjug Chem. 2021;32:1306–14. https://doi.org/10.1021/acs.bioconjchem.0c00649.

    Article  CAS  PubMed  Google Scholar 

  22. Ghai A, Maji D, Cho N, Chanswangphuwana C, Rettig M, Shen D, et al. Preclinical development of CD38-targeted [(89)Zr]Zr-DFO-daratumumab for imaging multiple myeloma. J Nucl Med. 2018;59:216–22. https://doi.org/10.2967/jnumed.117.196063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho N, Ko S, Shokeen M. Preclinical development of near-infrared-labeled CD38-targeted daratumumab for optical imaging of CD38 in multiple myeloma. Mol Imaging Biol. 2021;23:186–95. https://doi.org/10.1007/s11307-020-01542-4.

    Article  CAS  PubMed  Google Scholar 

  24. Ehlerding EB, England CG, Jiang D, Graves SA, Kang L, Lacognata S, et al. CD38 as a PET imaging target in lung cancer. Mol Pharm. 2017;14:2400–6. https://doi.org/10.1021/acs.molpharmaceut.7b00298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li S, England CG, Ehlerding EB, Kutyreff CJ, Engle JW, Jiang D, et al. ImmunoPET imaging of CD38 expression in hepatocellular carcinoma using (64)Cu-labeled daratumumab. Am J Transl Res. 2019;11:6007–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 2018;8:1156–75. https://doi.org/10.1158/2159-8290.Cd-17-1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lam JH, Ng HHM, Lim CJ, Sim XN, Malavasi F, Li H, et al. Expression of CD38 on macrophages predicts improved prognosis in hepatocellular carcinoma. Front Immunol. 2019;10:2093. https://doi.org/10.3389/fimmu.2019.02093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. England CG, Rui L, Cai W. Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging. 2017;44:517–32. https://doi.org/10.1007/s00259-016-3560-9.

    Article  CAS  PubMed  Google Scholar 

  29. Krishnan A, Adhikarla V, Poku EK, Palmer J, Chaudhry A, Biglang-Awa VE, et al. Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab. Blood Adv. 2020;4:5194–202. https://doi.org/10.1182/bloodadvances.2020002603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caserta E, Chea J, Minnix M, Poku EK, Viola D, Vonderfecht S, et al. Copper 64-labeled daratumumab as a PET/CT imaging tracer for multiple myeloma. Blood. 2018;131:741–5. https://doi.org/10.1182/blood-2017-09-807263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang C, Chen Y, Hou YN, Liu Q, Zhang D, Zhao H, et al. ImmunoPET imaging of multiple myeloma with [(68)Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging. 2021;48:2749–60. https://doi.org/10.1007/s00259-021-05218-1.

    Article  CAS  PubMed  Google Scholar 

  32. Fumey W, Koenigsdorf J, Kunick V, Menzel S, Schütze K, Unger M, et al. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38(+) tumors in mouse models in vivo. Sci Rep. 2017;7:14289. https://doi.org/10.1038/s41598-017-14112-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ulaner GA, Landgren CO. Current and potential applications of positron emission tomography for multiple myeloma and plasma cell disorders. Best Pract Res Clin Haematol. 2020;33:101148. https://doi.org/10.1016/j.beha.2020.101148.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Minnix M, Adhikarla V, Caserta E, Poku E, Rockne R, Shively JE, et al. Comparison of CD38-targeted alpha- versus beta-radionuclide therapy of disseminated multiple myeloma in an animal model. J Nucl Med. 2021;62:795–801. https://doi.org/10.2967/jnumed.120.251983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82171970, 81871385, 81822037, 81972446), University of Wisconsin—Madison, the National Institutes of Health (P30CA014520), the Beijing Science Foundation for Distinguished Young Scholars (JQ19028), the PKU medicine-X Youth Program (PKU2021LCXQ023), and the Open Funding Project of the State Key Laboratory of Biochemical Engineering (2020KF-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Kang, Dawei Jiang, Xiaojie Xu or Weibo Cai.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

Weibo Cai is the scientific advisor, stockholder, and grantee of Focus-X Therapeutics, Inc. All the other authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 576 KB)

Supplementary file2 (JPG 1198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Li, C., Yang, Q. et al. 64Cu-labeled daratumumab F(ab′)2 fragment enables early visualization of CD38-positive lymphoma. Eur J Nucl Med Mol Imaging 49, 1470–1481 (2022). https://doi.org/10.1007/s00259-021-05593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05593-9

Keywords

Navigation