Adaptation and validation of FFT methods for homogenization of lattice based materials

https://doi.org/10.1016/j.cma.2021.114223Get rights and content
Under a Creative Commons license
open access

Abstract

An FFT framework which preserves a good numerical performance in the case of domains with large regions of empty space is proposed and analyzed for its application to lattice based materials. Two spectral solvers specially suited to resolve problems containing phases with zero stiffness are considered (1) a Galerkin approach combined with the MINRES linear solver and a discrete differentiation rule and (2) a modification of a displacement FFT solver which penalizes the indetermination of strains in the empty regions, leading to a fully determined equation. The solvers are combined with several approaches to smooth out the lattice surface, based on modifying the actual stiffness of the voxels not fully embedded in the lattice or empty space. The accuracy of the resulting approaches is assessed for an octet-lattice by comparison with FEM solutions for different relative densities and discretization levels. It is shown that the adapted Galerkin approach combined with a Voigt surface smoothening was the best FFT framework considering accuracy, numerical efficiency and h-convergence. With respect to numerical efficiency it was observed that FFT becomes competitive compared to FEM for cells with relative densities above 7%. Finally, to show the real potential of the approaches presented, the FFT frameworks are used to simulate the behavior of a printed lattice by using direct 3D tomographic data as input. The approaches proposed include explicitly in the simulation the actual surface roughness and internal porosity resulting from the fabrication process. The simulations allowed to quantify the reduction of the lattice stiffness as well as to resolve the stress localization of 50% near large pores.

Keywords

FFT homogenization
Lattice materials
Micromechanics
Image based simulations

Cited by (0)