Skip to main content
Log in

Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, the ternary catalyst, PdPtAu, was synthesized for the electrochemical formic acid oxidation reaction. The catalyst was prepared through the co-precipitation using NaBH4 as a reducing agent. The status of catalyst formation and the extent of average particle size were known by X-ray diffraction (XRD) and transmission electron microscopy (TEM). For this work, we accomplished electrochemical analyses for the PdPtAu, Pd, Pt, and Au, which defines each activity for formic acid oxidation. In durability tests, half cell and single cell tests show even better stability than the Pd and Au catalysts. Stripping tests were carried out after durability tests. Based on results, the ternary PdPtAu catalyst is less deactivated than the Pd, while the catalyst shows higher activity than the Pt. The PdPtAu catalyst represents high resistance for poisoning as compared to the Pd. We demonstrate the stability of the PdPtAu catalyst in the 3-electrode electrochemical system and single cell tests. After 2 h-operation, the deactivation degree of PdPtAu shows 27% loss of the initial current density, while Pd and Pt catalysts lost 39% and 57% of them, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ha, Z. Dunbar and R. I. Masel, J. Power Sources, 158, 129 (2006).

    Article  CAS  Google Scholar 

  2. S. Ha, R. Larsen and R. I. Masel, J. Power Sources, 144, 28 (2005).

    Article  CAS  Google Scholar 

  3. S. Ha, R. Larsen, Y. Zhu and R. I. Masel, Fuel Cells, 4, 337 (2004).

    Article  CAS  Google Scholar 

  4. W. S. Jung, J. Han and S. Ha, J. Power Sources, 173, 53 (2007).

    Article  CAS  Google Scholar 

  5. W. S. Jung, J. Han, S. P. Yoon, S. W. Nam, T.-H. Lim and S.-A. Hong, J. Power Sources, 196, 4573 (2011).

    Article  CAS  Google Scholar 

  6. S.-H. Uhm, H.-R. Jeon and J.-Y. Lee, J. Electrochem. Sci. Technol., 1, 10 (2010).

    Article  CAS  Google Scholar 

  7. L. Sui, W. An, C. K. Rhee and S. H. Hur, J. Electrochem. Sci. Technol., 11, 84 (2020).

    Article  CAS  Google Scholar 

  8. S. D. Han, J. H. Choi, S. Y. Noh, K. Park, S. K. Yoon and Y. W. Rhee, Korean J. Chem. Eng., 26, 1040 (2009).

    Article  CAS  Google Scholar 

  9. Y. Wang, Z. Xiong and Y. Xia, RSC Adv., 7, 40462 (2017).

    Article  CAS  Google Scholar 

  10. H. Shi, F. Liao, W. Zhu, C. Shao and M. Shao, Int. J. Hydrogen Energy, 45, 16071 (2020).

    Article  CAS  Google Scholar 

  11. S.-Y. Lee, N. Jung, J. Cho, H.-Y. Park, J. Ryu, I. Jang, H.-J. Kim, E. Cho, Y.-H. Park, H. C. Ham, J. H. Jang and S. J. Yoo, ACS Catal., 4, 2402 (2014).

    Article  CAS  Google Scholar 

  12. D. Liu, M. Xie, C. Wang L. Liao, L. Qiu, J. Ma, H. Huang, R. Long, J. Jiang and Y. Xiong, Nano Res., 9, 1590 (2016).

    Article  CAS  Google Scholar 

  13. Y. Lu and W. Chen, ACS Catal., 2, 84 (2012).

    Article  CAS  Google Scholar 

  14. H. Liao, J. Zhu and Y. Hou, Nanoscale, 6, 1049 (2014).

    Article  CAS  Google Scholar 

  15. L. Hong, Q. Dong, Q. Qin, H. Li, J. Xie, G. Yu and H. Chen, Int. J. Hydrogen Energy, 44, 19900 (2019).

    Article  CAS  Google Scholar 

  16. L. Y. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li, L. Zheng and W. Chen, Appl. Surf. Sci., 469, 305 (2019).

    Article  CAS  Google Scholar 

  17. A. Shafaei Douk, H. Saravani and M. Noroozifar, J. Alloys Compd., 739, 882 (2018).

    Article  CAS  Google Scholar 

  18. L. Juárez-Marmolejo, S. Pérez-Rodríguez, M. G. Montes de Oca-Yemha, M. Palomar-Pardavé, M. Romero-Romo, A. Ezeta-Mejía, P. Morales-Gil, M. V. Martínez-Huerta and M. J. Lázaro, Int. J. Hydrogen Energy, 44, 1640 (2019).

    Article  Google Scholar 

  19. Y. Jin, J. Zhao, F. Li, W. Jia, D. Liang, H. Chen, R. Li, J. Hu, J. Ni, T. Wu and D. Zhong, Electrochim. Acta, 220, 83 (2016).

    Article  CAS  Google Scholar 

  20. K. Ding, L. Liu, Y. Cao, X. Yan, H. Wei and Z. Guo, Int. J. Hydrogen Energy, 39, 7326 (2014).

    Article  CAS  Google Scholar 

  21. A. Caglar, B. Ulas, M. S. Cogenli, A. B. Yurtcan and H. Kivrak, J. Electroanal. Chem., 850, 113402 (2019).

    Article  CAS  Google Scholar 

  22. C. Xu, Q. Hao and H. Duan, J. Mater. Chem. A, 2, 8875 (2014).

    Article  CAS  Google Scholar 

  23. Y. Li, X. Cao, L. Wang, Y. Wang, Q. Xu and Q. Li, J. Taiwan Inst. Chem. Eng., 76, 109 (2017).

    Article  CAS  Google Scholar 

  24. J.-H. Choi, K.-W. Park, I.-S. Park, K. Kim, J.-S. Lee and Y.-E. Sung, J. Electrochem. Soc., 153, A1812 (2006).

    Article  CAS  Google Scholar 

  25. T. J. Schmidt, H. A. Gasteiger, G. D. Stäb, P. M. Urban, D. M. Kolb and R. J. Behm, J. Electrochem. Soc., 145, 2354 (1998).

    Article  CAS  Google Scholar 

  26. G.-Q. Lu, A. Crown and A. Wieckowski, J. Phys. Chem. B, 103, 9700 (1999).

    Article  CAS  Google Scholar 

  27. S. Wasmus, D. A. Tryk and W. Vielstich, J. Electroanal. Chem., 377, 205 (1994).

    Article  CAS  Google Scholar 

  28. W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus and A. Wieckowski, J. Phys. Chem. B, 110, 13393 (2006).

    Article  CAS  Google Scholar 

  29. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 44, 1 (1973).

    Article  CAS  Google Scholar 

  30. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 45, 205 (1973).

    Article  CAS  Google Scholar 

  31. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 44, 239 (1973).

    Article  CAS  Google Scholar 

  32. Y. X. Chen, M. Heinen, Z. Jusys and R. J. Behm, Angew. Chem. Int. Ed., 45, 981 (2006).

    Article  CAS  Google Scholar 

  33. K.-J. Jeong, C. M. Miesse, J.-H. Choi, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T.-H. Lim and T. G. Lee, J. Power Sources, 168, 119 (2007).

    Article  CAS  Google Scholar 

  34. H. Ha, S. Yoon, K. An and H. Y. Kim, ACS Catal., 8, 11491 (2018).

    Article  CAS  Google Scholar 

  35. B. Ulas, A. Caglar, A. Kivrak, N. Aktas and H. Kivrak, Ionics, 26, 3109 (2020).

    Article  CAS  Google Scholar 

  36. W. S. Jung, W. H. Lee, H.-S. Oh and B. N. Popov, J. Mater. Chem. A, 8, 19833 (2020).

    Article  CAS  Google Scholar 

  37. W. S. Jung and B. N. Popov, ACS Appl. Mater. Interfaces, 9, 23679 (2017).

    Article  CAS  Google Scholar 

  38. J. Huang, H. Hou and T. You, Electrochem. Commun., 11, 1281 (2009).

    Article  CAS  Google Scholar 

  39. K. Jiang, H.-X. Zhang, S. Zou and W.-B. Cai, PCCP, 16, 20360 (2014).

    Article  CAS  Google Scholar 

  40. X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita and Q. Xu, J. Am. Chem. Soc., 133, 11822 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Science and Technology and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1 C1004206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Won Suk Jung or Jonghee Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, W.S., Han, J. Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation. Korean J. Chem. Eng. 38, 2229–2234 (2021). https://doi.org/10.1007/s11814-021-0909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0909-y

Keywords

Navigation