Skip to main content

Advertisement

Log in

Thermo-economic evaluation of R1233zd(E) as an R245fa alternative in organic Rankine cycle for geothermal applications

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To quicken the process for high global warming potential (GWP) working fluid replacement for organic Rankine cycle (ORC) systems, a thermo-economic evaluation of low GWP fluid R1233zd(E) as an R245fa alternative has been performed in comparison with other natural fluids n-Pentane, Isopentane, and Isobutane for geothermal applications. The heat source water mass flow rate remains constant and 5 K pinch point is set for both evaporator side and condenser side. All working fluids have a close net thermal efficiency within 2%. Increasing the heat source from 120 °C to 160 °C gives a more than 20% efficiency rise. The low critical temperature of Isobutane limits its application for 160 °C heat source. R1233zd(E) displays a close mass flow rate (within 2%) from R245fa and others exhibit more than 40% flow rate reduction. The component level performance has also been investigated in this study. All alternatives exhibit a lower evaporator side (evaporator and preheater) heat transfer area than baseline R245fa, and a slightly higher condenser side (condenser and desuperheater) heat transfer area. For turbine performance, R245fa displays the highest volume flow ratio, indicating a significant change of the rotor blade height should be made between the inlet and outlet point for the expansion process. R1233zd(E) displays ∼10% increase for turbine size parameter from baseline, n-Pentane shows ∼22% rise, Isopentane exhibits ∼11% rise, while Isobutane presents 32% decrease, respectively. In general, R1233zd(E) only exhibits ∼2.3% higher specific investment cost than R245fa, while n-Pentane and Isopentane exhibit more than 15% cost rise. Thus, from the thermo-economic scale with an extended application range, R1233zd(E) exhibits a better overall performance index when compared with other R245fa alternatives and can be serviced as promising candidate to replace R245fa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CEPEI:

chemical engineering plant cost index

EORC:

organic Rankine cycle with a vapor-liquid ejector

EU:

european union

GHG:

greenhouse gas

GWP:

global warming potential

HC:

hydrocarbon

HCFC:

hydrochlorofluorocarbon

HFC:

hydrofluorocarbon

HFO:

hydrofluoroolefin

HP:

heat pump

LMTD:

logarithmic mean temperature difference

NBP:

normal boiling point

ODP:

ozone depletion potential

ORC:

organic Rankine cycle

RORC:

regenerative organic Rankine cycle

SIC:

specific investment cost

A:

area [m2]

C:

cost [$] or coefficient for the component cost functions [−]

d:

tube diameter [m]

Ds :

shell diameter [m]

f:

friction factor

G:

mass velocity [kg/m2s]

h:

enthalpy per unit mass of the state [kJ/kg] or heat transfer coefficient [W/m2·K]

k:

thermal conductivity [W/m·K]

K:

coefficient related to the component or coefficient related to the shell-and-tube geometry

L:

length [m]

LMTD:

log-mean temperature difference [°C]

M:

refrigerant charge amount [kg]

m:

refrigerant mass flow rate [kg/s]

P:

pressure of the state [kPa or bar]

Pr :

Prandtl number

PT :

tube pitch [mm]

\(\mathop {\rm{Q}}\limits^ \cdot \) :

heat delivery/flow [kW]

Re:

Reynold number

SP:

turbine size indicator [m2]

SIC:

specific investment cost [$/kW]

U:

heat transfer coefficient [W/m2·K]

V:

volume flow rate [m3/s]

W:

power consumption/generation [kW]

ω :

flammability factor, for non-flammable refrigerants, it is 1 and for flammable refrigerants, it is pre-set as 1.1

Y2 :

Chisholm parameter [−]

ϕ :

the turbine size ratio [−]

α :

void fraction[−] x:quality [kg/kg]

ρ :

density [kg/m3] η

δ :

relative area ratio [−]

p:

pump

s:

shell

t:

turbine or tube

g:

gas

HX:

heat exchanger

in:

inlet

l:

liquid

v:

vapor

out:

outlet

ref:

refrigerant

tp:

two phase

1–4:

state point

References

  1. EU climate action, https://ec.europa.eu/clima/citizens/eu_en (2021).

  2. M. Davis, A. Moronkeji, M. Ahiduzzaman and A. Kumar, Energy Sustain. Dev., 59, 243 (2020).

    Article  Google Scholar 

  3. U. Muhammad, M. Imran, D. H. Lee and B. S. Park, Energy Convers. Manag., 103, 1089 (2015).

    Article  CAS  Google Scholar 

  4. M. Li, J. Wang, W He, L. Gao, B. Wang, S. Ma and Y. Dai, Renew. Energy, 57, 216 (2013).

    Article  CAS  Google Scholar 

  5. G. Li, Sustain. Energy Technol. Assess., 21, 33 (2017).

    Google Scholar 

  6. G. Li, Korean J. Chem. Eng., 38, 1438 (2021).

    Article  CAS  Google Scholar 

  7. The European Parliament and the Council of the European Union, Regulation (EU) no 517/2014 of the European parliament and the council of the European union of 16 April 2014 on fluorinated greenhouse gases and repealing regulation (EC) No. 842/2006 (2014).

  8. W Liu, D. Meinel, C. Wieland and H. Spliethoff, Energy, 67, 106 (2014).

    Article  CAS  Google Scholar 

  9. F. Moles, J. Navarro-Esbri, B. Peris, A. Mota-Babiloni, A. Barragan-Cervera and K. K. Kontomaris, Appl. Therm. Eng., 71, 204 (2014).

    Article  CAS  Google Scholar 

  10. F. Moloney, E. Almatrafi and D. Y. Goswami, Renew. Energy, 147, 2874 (2020).

    Article  CAS  Google Scholar 

  11. J. Chen, Y. Huang, Z. Niu, Y. Chen and X. Luo, Energy Convers. Manag., 157, 382 (2018).

    Article  CAS  Google Scholar 

  12. G. A. Longo, S. Mancin, G. Righetti, C. Zilio and J. S. Brown, Appl. Therm. Eng., 167, 114804 (2020).

    Article  CAS  Google Scholar 

  13. A. Giuffrida, Energy, 161, 1172 (2018).

    Article  CAS  Google Scholar 

  14. A. Mahmoudi, M. Fazli and M. R. Morad, Appl. Therm. Eng., 143, 660 (2018).

    Article  CAS  Google Scholar 

  15. B. V. Datla and J. J. Brasz, Comparing R1233zd and R245fa for low temperature ORC application, in: 15th International Compressor Engineering Conference at Purdue, 14–17 July, 2014 (2014)

  16. S. Eyerer, C. Wieland, A. Vandersickel and H. Spliethoff, Energy, 103, 660 (2016).

    Article  CAS  Google Scholar 

  17. F. Molés, J. Navarro-Esbri, B. Peris and A. Mota-Babiloni, Appl. Therm. Eng., 98, 954 (2016).

    Article  Google Scholar 

  18. J. Yang, Z. Sun, B. Yu and J. Chen, Appl. Therm. Eng., 141, 10 (2018).

    Article  CAS  Google Scholar 

  19. J. Yang, Z. Ye, B. Yu, H. Ouyang and J. Chen, Energy, 173, 721 (2019).

    Article  CAS  Google Scholar 

  20. S. Eyerer, F. Dawo, J. Kaindl, C. Wieland and H. Spliethoff, Appl. Energy, 240, 946 (2019).

    Article  CAS  Google Scholar 

  21. L. Talluri, O. Dumont, G. Manfrida, V. Lemort and D. Fiaschi, Appl. Therm. Eng., 174, 115293 (2020).

    Article  CAS  Google Scholar 

  22. L. Talluri, O. Dumont, G. Manfrida, V. Lemort and D. Fiaschi, Energy, 211, 118570 (2020).

    Article  CAS  Google Scholar 

  23. E. Lemmon, M. Huber and M. Mclinden, NIST reference fluid thermodynamic and transport properties REFPROP, version 10.0. The National Institute of Standards and Technology (NIST) (2021).

  24. Y. A. Çengel, Heat and mass transfer (Second ed.), McGraw-Hill (2002).

  25. D. Q. Kern, Process heat transfer, Tata McGraw-Hill Education, New York (1950).

    Google Scholar 

  26. D. Green and R. Perry, Perry’s chemical engineers’ handbook, McGraw-Hill, New York (2007).

    Google Scholar 

  27. W. H. McAdams, Heat transmission, McGraw-Hill, New York (1958).

    Google Scholar 

  28. T. Tinker, Proceedings of the general discussion on heat transfer, Institution of Mechanical Engineers, London (1951).

    Google Scholar 

  29. G. F. Hewitt, Hemisphere handbook of heat exchanger design, Hemisphere Publishing Corporation, New York (1990).

    Google Scholar 

  30. L. D. Boyko and G. N. Kruzhilin, Int. J. Heat Mass Tran., 10, 361 (1967).

    Article  CAS  Google Scholar 

  31. E. Macchi, Design criteria for turbines operating with fluids having a low speed of sound in closed cycle gas turbines. Lecture series 100 on closed cycle gas turbines, von Karman Institute for Fluid Dynamics (1977).

  32. S. L. Dixon, Fluid mechanics and thermodynamics of turbomachinery, 4th Ed. Butterworth-Heinemann (1998).

  33. D. Japikse and N. C. Baines, Introduction to turbomachinery, 1st Ed. Concepts ETI, Inc. and Oxford University Press (1997).

  34. R. Turton, R. C. Bailie, W B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes, Pearson Education (2008).

  35. Chemical Engineering Plant Cost Index, http://www.chemengonline.com/pci-home, Chemecal Engineering (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G. Thermo-economic evaluation of R1233zd(E) as an R245fa alternative in organic Rankine cycle for geothermal applications. Korean J. Chem. Eng. 38, 2195–2207 (2021). https://doi.org/10.1007/s11814-021-0936-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0936-8

Keywords

Navigation