Skip to main content
Log in

A family of linear codes from constant dimension subspace codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Linear codes with good parameters have wide applications in secret sharing schemes, authentication codes, association schemes, consumer electronics and communications, etc. During the past four decades, constructions of linear codes with good parameters received much attention and many classes of such codes were presented. In this paper, we obtain a family of linear codes with good parameters over \(\mathbb {F}_p\) by exploring further properties of constant dimension subspace codes, where p is a prime. The weight distribution of three classes of linear codes presented in this family is determined. Most notably, three classes of linear codes presented in this family are distance-optimal with respect to the Griesmer bound. Also, this paper presents a sufficient and necessary condition for this family of linear codes to have a \(\lambda \)-dimensional hull. In addition, we show that our linear codes can be used to construct secret sharing schemes with interesting access structures and strongly regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede R., Cai N., Li S.Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000).

    Article  MathSciNet  Google Scholar 

  2. Ahlswede R., Aydinian H.K., Khachatrian L.H.: On perfect codes and related concepts. Des. Codes Cryptogr. 22(3), 221–237 (2001).

    Article  MathSciNet  Google Scholar 

  3. Ashikhmin A.E., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998).

    Article  MathSciNet  Google Scholar 

  4. Bartoli D., Bonini M.: Minimal linear codes in odd characteristic. IEEE Trans. Inf. Theory 65, 4152–4155 (2019).

    Article  MathSciNet  Google Scholar 

  5. Belov B.A.: Conjecture on the Griesmer boundary. In: Proceedings of the Optimimization Methods and Their Applications, All Union Summer Sem., Lake Baikal, pp. 100–106 (1972).

  6. Best M.R.: A contribution to the nonexistence of perfect codes. Mathematisch Centrum (1982).

  7. Bose R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pac. J. Math. 13, 389–419 (1963).

    Article  MathSciNet  Google Scholar 

  8. Calderbank A., Kantor W.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).

    Article  MathSciNet  Google Scholar 

  9. Chang S., Hyun J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86, 2167–2181 (2018).

    Article  MathSciNet  Google Scholar 

  10. Chihara L.: On the zeros of the Askey–Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18(1), 191–207 (1987).

    Article  MathSciNet  Google Scholar 

  11. Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61, 3265–3275 (2015).

    Article  MathSciNet  Google Scholar 

  12. Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61, 5835–5842 (2015).

    Article  MathSciNet  Google Scholar 

  13. Ding C., Yuan J.: Covering and secret sharing with linear codes. Discret. Math. Theor. Comput. Sci. 2731, 11–25 (2003).

    Article  MathSciNet  Google Scholar 

  14. Ding C., Heng Z., Zhou Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory 64, 6536–6545 (2018).

    Article  MathSciNet  Google Scholar 

  15. Etzion T., Vardy A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011).

    Article  MathSciNet  Google Scholar 

  16. Gao Y., Liu Z., Liu Y.: The separation of binary relative three-weight codes and its applications. Cryptogr. Commun. 11, 979–992 (2019).

    Article  MathSciNet  Google Scholar 

  17. Gorla E., Ravagnani A.: Equidistant subspace codes. Linear Algebra Appl. 490, 48–65 (2016).

    Article  MathSciNet  Google Scholar 

  18. Hamada N., Helleseth T., Ytrehus Ø.: A new class of nonbinary codes meeting the Griesmer bound. Discret. Appl. Math. 47(3), 219–226 (1993).

    Article  MathSciNet  Google Scholar 

  19. Helleseth T.: Further classifications of codes meeting the Griesmer bound. IEEE Trans. Inf. Theory 30(2), 395–403 (1984).

    Article  MathSciNet  Google Scholar 

  20. Helleseth T.: Projective codes meeting the Griesmer bound. Discret. Math. 106–107, 265–271 (1992).

    Article  MathSciNet  Google Scholar 

  21. Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. Finite Field Appl. 54, 176–196 (2018).

    Article  MathSciNet  Google Scholar 

  22. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  23. Jaffe D.B., Simonis J.: New binary linear codes which are dual transforms of good codes. IEEE Trans. Inf. Theory 45(6), 2136–2137 (1999).

    Article  MathSciNet  Google Scholar 

  24. Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).

    Article  MathSciNet  Google Scholar 

  25. Li X., Shi M.: A new family of optimal binary few-weight codes from simplicial complexes. IEEE Commun. Lett. 25(4), 1048–1051 (2021).

    Article  Google Scholar 

  26. Li X., Yue Q.: Four classes of minimal binary linear codes with \(w_{min}/w_{max}<1/2\) derived from Boolean functions. Des. Codes Cryptogr. 88(2), 257–271 (2020).

    Article  MathSciNet  Google Scholar 

  27. Li X., Fan C., Du X.: A family of distance-optimal minimal linear codes with flexible parameters. Cryptogr. Commun. 12(3), 559–567 (2020).

    Article  MathSciNet  Google Scholar 

  28. Liu Z., Wu W.: On relative constant-weight codes. Des. Codes Cryptogr. 75, 127–144 (2015).

    Article  MathSciNet  Google Scholar 

  29. Martin W.J., Zhu X.J.: Anticodes for the Grassman and bilinear forms graphs. Des. Codes Cryptogr. 6(1), 73–79 (1995).

    Article  MathSciNet  Google Scholar 

  30. McEliece R.J., Sarwate D.V.: On sharing secrets and Reed–Solomon codes. Commun. ACM 24(9), 583–584 (1981).

    Article  MathSciNet  Google Scholar 

  31. Schwartz M., Etzion T.: Codes and anticodes in the Grassman graph. J. Combin. Theory A 97(1), 27–42 (2002).

    Article  MathSciNet  Google Scholar 

  32. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).

    Article  MathSciNet  Google Scholar 

  33. Solomon G., Stiffler J.J.: Algebraically punctured cyclic codes. Inf. Control 8, 170–179 (1965).

    Article  MathSciNet  Google Scholar 

  34. Tang D., Fan C.: A class of distance-optimal binary linear codes with flexible parameters. IEEE Commun. Lett. 21(9), 1893–1896 (2017).

    Article  Google Scholar 

  35. Wu Y., Zhu X., Yue Q.: Optimal few-weight codes from simplicial complexes. IEEE Commun. Lett. 66(6), 3657–3663 (2020).

    MathSciNet  MATH  Google Scholar 

  36. Xia S., Fu F.: Johnson type bounds on constant dimension codes. Des. Codes Cryptogr. 50(2), 163–172 (2009).

    Article  MathSciNet  Google Scholar 

  37. Yan H., Zhou Z., Du X.: A family of optimal ternary cyclic codes from the Niho-type exponent. Finite Field Appl. 54, 101–112 (2018).

    Article  MathSciNet  Google Scholar 

  38. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).

    Article  MathSciNet  Google Scholar 

  39. Zhang W., Yan H., Wei H.: Four families of minimal binary linear codes with \(w_{\min }/w_{\max }\le 1/2\). Appl. Algebra Eng. Commun. Comput. 30, 175–184 (2019).

    Article  Google Scholar 

  40. Zhou Z.: Three-weight ternary linear codes from a family of cyclic difference sets. Des. Codes Cryptogr. 86(11), 2513–2523 (2018).

    Article  MathSciNet  Google Scholar 

  41. Zhou Z., Ding C.: A class of three-weight cyclic codes. Finite Field Appl. 25, 79–93 (2014).

    Article  MathSciNet  Google Scholar 

  42. Zhou Z., Li N., Fan C., Helleseth T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81(2), 283–295 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous reviewers and the editors for their insightful and instructive suggestions that improved the technical as well as editorial quality of this paper. This work was supported in part by the National Natural Science Foundation of China (Nos. 61872435, 62172219, 61772015, 12031011), the National Key R&D Program of China (No. 2020YFA0712300), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJKY\(19_{-}0167\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng Tang.

Additional information

Communicated by C. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper was supported by National Natural Science Foundation of China (No. 61772015), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJKY\(19_{-}0167\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yue, Q. & Tang, D. A family of linear codes from constant dimension subspace codes. Des. Codes Cryptogr. 90, 1–15 (2022). https://doi.org/10.1007/s10623-021-00960-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00960-x

Keywords

Mathematics Subject Classification

Navigation