Skip to main content

Advertisement

Log in

Physics-lumped parameter based control oriented model of dielectric tubular actuator

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Dielectric elastomers (DEs) deform and change shape when an electric field is applied across them. They are flexible, resilient, lightweight, and durable and as such are suitable for use as soft actuators. In this paper a physics-based and control-oriented model is developed for a DE tubular actuator using a physics-lumped parameter modeling approach. The model derives from the nonlinear partial differential equations (PDE) which govern the nonlinear elasticity of the DE actuator and the ordinary differential equation (ODE) that governs the electrical dynamics of the DE actuator. With the boundary conditions for the tubular actuator, the nonlinear PDEs are numerically solved and a quasi-static nonlinear model is obtained and validated by experiments. The full nonlinear model is then linearized around an operating point with an analytically derived Hessian matrix. The analytically linearized model is validated by experiments. Proportional–Integral–Derivative (PID) and \(H_{\infty }\) control are developed and implemented to perform position reference tracking of the DEA and the controllers’ performances are evaluated according to control energy and tracking error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010). (01)

    Article  Google Scholar 

  • Carpi, F., Bauer, S., de Rossi, D.: Stretching dielectric elastomer performance. Science (New York, N.Y.) 330, 1759–61 (2010). (12)

    Article  Google Scholar 

  • Chakraborti, P., Toprakci, H.K., Yang, P., Spigna, N.D., Franzon, P., Ghosh, T.: A compact dielectric elastomer tubular actuator for refreshable braille displays. Sens. Actuators A Phys. 179, 151–157 (2012)

    Article  Google Scholar 

  • Documentation, S.: Simulation and model-based design, 2020. [Online]. https://www.mathworks.com/products/simulink.html (2020). Accessed 14 June 2021

  • dspace.: [Online]. https://www.dspace.com/en/inc/home.cfm (2021). Accessed 14 June 2021

  • Gu, G.-Y., Gupta, U., Zhu, J., Zhu, L.-M., Zhu, X.: Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 33(5), 1263–1271 (2017)

    Article  Google Scholar 

  • He, T., Cui, L., Chen, C., Suo, Z.: Nonlinear deformation analysis of a dielectric elastomer membrane-spring system. Smart Mater. Struct. 19(8), 085017 (2010). (07)

    Article  Google Scholar 

  • Hoffstadt, T., Maas, J.: Adaptive sliding-mode position control for dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 22(5), 2241–2251 (2017)

    Article  Google Scholar 

  • Huang, P., Wu, J., Zhang, P., Wang, Y., Su, C.-Y.: Dynamic modeling and tracking control for dielectric elastomer actuator with model predictive controller. IEEE Trans. Ind. Electron. 1–1 (2021)

  • Jordi, C., Michel, S., Fink, E.: Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir. Biomimet. 5, 026007 (2010). (06)

    Article  Google Scholar 

  • Katzschmann, R.K., DelPreto, J., MacCurdy, R., Rus, D.: Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3(16) (2018)

  • Kim, B., Lee, S.B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S.: A comparison among neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 13, 05 (2012)

    Article  Google Scholar 

  • Kovacs, G., Lochmatter, P., Wissler, M.: An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater. Struct. 16, 306 (2007). (04)

    Article  Google Scholar 

  • Kovacs, G., Düring, L., Michel, S., Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators A Phys. 155(2), 299–307 (2009)

    Article  Google Scholar 

  • Lau, G.-K., Lim, H.-T., Teo, J.-Y., Chin, Y.-W.: Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers. Smart Mater. Struct. 23(2), 025021 (2014)

    Article  Google Scholar 

  • Lu, T., Huang, J., Jordi, C., Kovacs, G., Huang, R., Clarke, D.R., Suo, Z.: Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter 8(22), 6167–6173 (2012)

    Article  Google Scholar 

  • Marchese, A., Onal, C., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1, 75–87 (2014). (03)

    Article  Google Scholar 

  • Massa, B., Roccella, S., Carrozza, M.C., Dario, P.: Design and development of an underactuated prosthetic hand. In: Proceedings ICRA ’02, IEEE International Conference on Robotics and Automation, vol. 4, 01, pp. 3374–3379 (2002)

  • MATLAB.: 9.7.0.1216025 (R2019b). Natick, Massachusetts: The MathWorks Inc., (2019)

  • Nise, N.S.: Control Systems Engineering, (With CD). Wiley, Hoboken (2007)

    Google Scholar 

  • Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 326(1567), 565–584 (1972)

    MATH  Google Scholar 

  • Pelrine, R., Kornbluh, R.D., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: generator mode fundamentals and applications. In: Smart Structures and Materials,: Electroactive Polymer Actuators and Devices, Y. Bar-Cohen, Ed., vol. 4329, International Society for Optics and Photonics. SPIE, 2001, 148–156 (2001a)

  • Pelrine, R., Sommer-Larsen, P., Kornbluh, R.D., Heydt, R., Kofod, G., Pei, Q., Gravesen, P.: Applications of dielectric elastomer actuators. In: Smart Structures and Materials: Electroactive Polymer Actuators and Devices, Y. Bar-Cohen, Ed., vol. 4329, International Society for Optics and Photonics. SPIE, 2001, 335–349 (2001b)

  • Pelrine, R., Kornbluh, R., Pei, Q., Stanford, S., Oh, S., Eckerle, J., Meijer, K.: Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Proc. SPIE 4695, 126–137 (2002). (07)

    Article  Google Scholar 

  • Pid tuner app. [Online]. https://www.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html (2021). Accessed 14 June 2021

  • Plante, J.-S., Dubowsky, S.: Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids Struct. 43, 04 (2006)

    Article  Google Scholar 

  • Rizzello, G., Naso, D., York, A., Seelecke, S.: Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback. Smart Mater. Struct. 25(3), 035034 (2016)

    Article  Google Scholar 

  • Romasanta, L., Lopez-Manchado, M., Verdejo, R.: Increasing the performance of dielectric elastomer actuators A review from the materials perspective. Progress Polym. Sci., 51, pp. 188–211 (2015), environmentally Relevant and Hybrid Polymer Materials. [Online]. https://www.sciencedirect.com/science/article/pii/S0079670015000921. Accessed 20 July 2021

  • Sarban, R., Jones, R.W.: Physical model-based active vibration control using a dielectric elastomer actuator. J. Intell. Mater. Syst. Struct. 23(4), 473–483 (2012)

    Article  Google Scholar 

  • Sarban, R., Jones, R., Mace, B., Rustighi, E.: A tubular dielectric elastomer actuator: fabrication, characterization and active vibration isolation. Mech. Syst. Signal Process. 25(8), 2879–2891 (2011)

    Article  Google Scholar 

  • Sarban, R., Lassen, B., Willatzen, M.: Dynamic electromechanical modeling of dielectric elastomer actuators with metallic electrodes. IEEE/ASME Trans. Mechatron. 17(5), 960–967 (2012)

    Article  Google Scholar 

  • Son, S., Goulbourne, N.: Dynamic response of tubular dielectric elastomer transducers. Int. J. Solids Struct. 47(20), 2672–2679 (2010)

    Article  Google Scholar 

  • Stoyanov, H., Brochu, P., Niu, X., Lai, C., Yun, S., Pei, Q.: Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. RSC Adv. 3, 2272–2278 (2013). https://doi.org/10.1039/C2RA22380E. (Online)

    Article  Google Scholar 

  • Tryson, M., Kiil, H.-E., Benslimane, M.: Powerful tubular core free dielectric electro activate polymer (DEAP) push actuator. In: Bar-Cohen, Y., Wallmersperger, T. (eds.) Electroactive Polymer Actuators and Devices (EAPAD), Online, vol. 7287, pp. 447–457. International Society for Optics and Photonics, SPIE (2009). https://doi.org/10.1117/12.815740

  • van Kessel, R., Bauer, P., Ferreira, J.A.: Electrical modeling of cylindrical dielectric elastomer transducers. Smart Mater. Struct. 30(3), 035021 (2021). https://doi.org/10.1088/1361-665x/abde4f. (Online)

    Article  Google Scholar 

  • Wang, S., Kaaya, T., Chen, Z.: Self-sensing of dielectric elastomer tubular actuator with feedback control validation. Smart Mater. Struct. 7, 075037 (2020)

    Article  Google Scholar 

  • Xie, S., Ramson, P., Graaf, D., Calius, E., Anderson, I.: An adaptive control system for dielectric elastomers. In: IEEE International Conference on Industrial Technology, 2005, pp. 335–340 (2005)

  • Ye, Z., Chen, Z.: Modeling and control of 2-dof dielectric elastomer diaphragm actuator. IEEE/ASME Trans. Mechatron. 24, 1 (2019). (01)

    Article  Google Scholar 

  • Ye, Z., Chen, Z., Asmatulu, R., Chan, H.: Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking. Smart Mater. Struct. 26(8), 085043 (2017). https://doi.org/10.1088/1361-665x/aa75f7. (Online)

    Article  Google Scholar 

  • Yeoh, O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63(5), 792–805 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant CMMI #1747855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix 1: derivation of equations of state

Starting with Eq. 10,

$$\begin{aligned} \delta E_H = 2\pi RH\int \delta WdX = F\delta z_B + \Phi \delta Q. \end{aligned}$$

Here,

$$\begin{aligned} \int \delta WdX=\int \left( s_1\delta \lambda _1 + s_2\delta \lambda _2 + {\bar{E}}\delta {\bar{D}}\right) dX. \end{aligned}$$
(46)

A small change in \(\lambda _1\) is given by

$$\begin{aligned} \delta \lambda _1 = \frac{\partial \lambda _1}{\partial dl}\delta dl =\frac{\delta dl}{dX} \end{aligned}$$
(47)

and from Eq. 2, taking a small change in dl

$$\begin{aligned} \delta dl = \frac{dr}{dl}\delta dr + \frac{dz}{dl}\delta dz. \end{aligned}$$

Substituting Eq. 1 into this result gives

$$\begin{aligned} \delta dl = -\cos {\theta }\delta dr + \sin {\theta }\delta dz. \end{aligned}$$

Finally Eq. 47 is written as

$$\begin{aligned} \delta \lambda _1=-\cos {\theta }\frac{d(\delta r)}{dX} + \sin {\theta }\frac{d(\delta z)}{dX}. \end{aligned}$$
(48)

Also a small change in \(\lambda _2\) is given by

$$\begin{aligned} \delta \lambda _2 = \frac{\partial \lambda _2}{\partial r}\delta r =\frac{\delta r}{R}. \end{aligned}$$
(49)

Finally, from Eq. 5, a small change in \({\bar{D}}\) is given by

$$\begin{aligned} \delta {\bar{D}}=\frac{\delta q}{A_0}. \end{aligned}$$
(50)

With these, Eq. 46 becomes

$$\begin{aligned} \begin{aligned} \int \left[ s_1 \left( -\cos {\theta }\frac{d(\delta r)}{dX} + \sin {\theta }\frac{d(\delta z)}{dX}\right) + s_2 \frac{\delta r}{R} + {\bar{E}}\frac{\delta q}{A_0}\right] dX\\ =\int \left[ -s_1 \cos {\theta }\frac{d(\delta r)}{dX} + s_1 \sin {\theta }\frac{d(\delta z)}{dX} + s_2 \frac{\delta r}{R} + {\bar{E}}\frac{\delta q}{A_0}\right] dX. \end{aligned} \end{aligned}$$

Integrating by parts gives

$$\begin{aligned} \begin{aligned}&s_1 (-\cos {\theta }\delta r + \sin {\theta }\delta z)\Bigr |_A^B \\&+ \int \left[ \left( \frac{d(s_1 \cos {\theta })}{dX} + \frac{s_2}{R}\right) \delta r - \frac{d(s_1 \sin {\theta })}{dX}\delta z + {\bar{E}}\frac{\delta q}{A_0}\right] dX. \end{aligned} \end{aligned}$$

By comparing the left hand side with the right hand side of the equation, the following is observed from the \(\delta z\) term inside the integral

$$\begin{aligned}&\frac{d\left( s_1 \sin {\theta }\right) }{dX}=0 \nonumber \\&\quad \Longrightarrow s_1 \sin {\theta }=Constant. \end{aligned}$$
(51)

Since there is no \(\delta z\) on the right hand side, physically this means that the vertical longitudinal stress component is fixed for a given applied load. This is the expected condition for the membrane in static equilibrium since the vertical force components must cancel out each other. Evaluating the boundaries gives

$$\begin{aligned} 2\pi RH \left\{ s_1\left( -\cos {\theta _B}\delta r_B + \sin {\theta _B}\delta z_B\right) \right. \\ \left. -s_1\left( -\cos {\theta _A}\delta r_A + \sin {\theta _A}\delta z_A\right) \right\} =F\delta z_B. \end{aligned}$$

The boundary conditions for the tubular actuator require that \(\delta r_B=\delta r_A=\delta z_A=0\). Therefore

$$\begin{aligned} \begin{aligned} 2\pi RH s_1 \sin {\theta _B}\delta z_B=F\delta z_B \\ 2\pi RH s_1 \sin {\theta }=F. \end{aligned} \end{aligned}$$
(52)

This corresponds to Eq. 15. Moving back into the integral is Eq. 14 directly from

$$\begin{aligned} \begin{aligned} \frac{d(s_1\cos \theta )}{dX} + \frac{s_2}{R}=0 \\ \frac{d(s_1\cos \theta )}{dX}=- \frac{s_2}{R}. \end{aligned} \end{aligned}$$
(53)

This result is from the fact that there are no external forces acting on the surface of the membrane radially as would be the case if the actuator were to be under compression or tension by an applied pressure on the membrane (Son and Goulbourne 2010). Finally,

$$\begin{aligned} 2 \pi RH\int {\bar{E}}\frac{\delta q}{A_0}dX=\Phi \delta Q. \end{aligned}$$

Taking the actuator as a cylindrical capacitor, \({\bar{E}}\) does not vary along the longitudinal direction and hence is a constant with respect to the X-direction. This gives

$$\begin{aligned} H{\bar{E}} \cdot 2 \pi R\int \frac{\delta q}{A_0}dX=\Phi \delta Q. \end{aligned}$$

And from Eq. 6

$$\begin{aligned} \delta Q = 2 \pi R\int \frac{\delta q}{A_0} \end{aligned}$$
(54)

therefore

$$\begin{aligned} H{\bar{E}}=\Phi . \end{aligned}$$
(55)

1.2 Appendix 2: derivation of the governing differential equations

This is the extended derivation of Eqs. 2123: Divide Eq. 1 by dX to get

$$\begin{aligned} \frac{dr}{dX}&=-\frac{dl}{dX}\cos {\theta },\\ \frac{dz}{dX}&=-\frac{dl}{dX}\sin {\theta }. \end{aligned}$$

But \(\frac{dl}{dX}=\lambda _1\). This gives Eq. 21 which is

$$\begin{aligned} \frac{dr}{dX}&=-\lambda _1\cos \theta ,\\ \frac{dz}{dX}&=\lambda _1\sin \theta . \end{aligned}$$

Using Eqs. 14 and 51 one can get Eq. 22. Solving Eq. 14 gives

$$\begin{aligned} \frac{ds_1}{dX}\cos {\theta } = s_1\sin {\theta }\frac{d\theta }{dX} -\frac{s_2}{R} \end{aligned}$$
(56)

and solving Eq. 51 gives

$$\begin{aligned} \frac{ds_1}{dX}\sin {\theta } = -s_1\cos {\theta }\frac{d\theta }{dX}. \end{aligned}$$
(57)

Dividing Eq. 57 by Eq. 56 gives

$$\begin{aligned} \tan \theta = \frac{-s_1\cos {\theta }\frac{d\theta }{dX}}{s_1\sin {\theta }\frac{d\theta }{dX} -\frac{s_2}{R}}. \end{aligned}$$

Solving for \(\frac{d\theta }{dX}\) gives

$$\begin{aligned} \begin{aligned} s_1\left( \tan \theta \cdot \sin {\theta } + \cos {\theta }\right) \frac{d\theta }{dX} = \frac{s_2}{R}\tan {\theta } \\ s_1\frac{d\theta }{dX} = \frac{s_2}{R}\sin {\theta } \end{aligned} \end{aligned}$$

Expanding \(\tan \theta\) gives

$$\begin{aligned} \begin{aligned} s_1\left( \frac{\sin \theta }{\cos \theta }\cdot \sin {\theta } + \cos {\theta }\right) \frac{d\theta }{dX} = \frac{s_2}{R}\tan {\theta }, \\ s_1\left( \frac{\sin ^2\theta + \cos ^2\theta }{\cos \theta }\right) \frac{d\theta }{dX} = \frac{s_2}{R}\tan {\theta }, \end{aligned} \end{aligned}$$

and using the trigonometric identity \(\sin ^2\theta + \cos ^2\theta = 1\) and multiplying through by \(\frac{\cos \theta }{s_1}\) gives us Eq. 22 as

$$\begin{aligned} \frac{d\theta }{dX}=\frac{s_2}{s_1R}\sin {\theta }. \end{aligned}$$
(58)

Now the algebraic equation 23 can be derived by solving for \(s_1\) in Eqs. 15 and 18 and setting the two equations equal to each other. From Eq. 15

$$\begin{aligned} s_1 = \frac{F}{2\pi RH\sin {\theta }}. \end{aligned}$$

Using the normalized load \(F^*\) gives

$$\begin{aligned} s_1 = \frac{\mu F^*}{R\sin {\theta }} \end{aligned}$$

and with Eq. 18

$$\begin{aligned} \begin{aligned} s_1&= \mu \left( \lambda _1 - \frac{1}{\lambda _1^3\lambda _2^2}\right) - \frac{{\bar{D}}^2}{\epsilon \lambda _1^3\lambda _2^2} = \frac{\mu F^*}{R\sin {\theta }} \\&\frac{\mu \epsilon \lambda _1^4\lambda _2^2 - \mu \epsilon - {\bar{D}}^2}{\epsilon \lambda _1^3\lambda _2^2} = \frac{\mu F^*}{R\sin {\theta }}. \end{aligned} \end{aligned}$$

From Eq. 20, \({\bar{D}}=\epsilon \lambda _1^2\lambda _2^2{\bar{E}}\) so,

$$\begin{aligned} \begin{aligned} \frac{\mu \epsilon \lambda _1^4\lambda _2^2 - \mu \epsilon - \epsilon ^2 \lambda _1^4\lambda _2^4{\bar{E}}^2}{\epsilon \lambda _1^3\lambda _2^2} = \frac{\mu F^*}{R\sin {\theta }} \\ \lambda _1^4\left( 1 - \frac{\epsilon {\bar{E}}^2}{\mu }\lambda _2^2\big )\right) - \frac{1}{\lambda _2^2} = \frac{F^*}{R\sin {\theta }}\lambda _1^3 \end{aligned} \end{aligned}$$

From Eq. 16, \({\bar{E}}^2= \frac{\Phi ^2}{H^2}\). Substituting this in the above expression gives

$$\begin{aligned} \lambda _1^4\left( 1 - \frac{\epsilon }{\mu }\cdot \frac{{\bar{\Phi }}^2}{H^2}\lambda _2^2)\right) - \frac{1}{\lambda _2^2} = \frac{F^*}{R\sin {\theta }}\lambda _1^3 \end{aligned}$$

Using the normalized applied voltage on the membrane gives the algebraic equation

$$\begin{aligned} \left[ 1- \left( \frac{\Phi ^*r}{R}\right) ^2\right] \lambda _1^4 - \frac{F^*}{R\sin {\theta }}\lambda _1^3 - \left( \frac{R}{r}\right) ^2 = 0. \end{aligned}$$
(59)

1.3 Appendix 3: Jacobian elements

$$\begin{aligned}&\frac{\partial {\dot{x}}_1}{\partial x_1}=0, \quad \frac{\partial {\dot{x}}_1}{\partial x_2}\ =1, \quad \frac{\partial {\dot{x}}_1}{\partial x_3}&=0.\\&f_1=\frac{\partial {\dot{x}}_2}{\partial x_1}=\frac{1}{m}\Bigg \{R\cos \theta \left( \left[ 1-\left( \frac{x_3^*r}{R}\right) ^2\right] \lambda _1-\frac{R^2}{r^2\lambda _1^3}\right) \frac{\partial \theta }{\partial x_1}\\&+2R\sin \theta \left( \frac{R^2}{r^3\lambda _1}-\frac{r\lambda _1x_3^2}{R^2}\right) \frac{\partial r}{\partial x_1}\\&+R\sin \theta \left( 1-\left( \frac{x_3^*r}{R}\right) ^2+\frac{3R^2}{r\lambda _1^4}\right) \frac{\partial \lambda _1}{\partial x_1}\Bigg \},\\&f_2=\frac{\partial {\dot{x}}_2}{\partial x_2}=-\frac{c^*}{m},\\&f_3=\frac{\partial {\dot{x}}_2}{\partial x_3}=\frac{2r^2\lambda _1x_3^*}{mR}\sin \theta , \end{aligned}$$

and

$$\begin{aligned} \frac{\partial {\dot{x}}_3}{\partial x_1}&=0,&\frac{\partial {\dot{x}}_3}{\partial x_2}&=0,&\frac{\partial {\dot{x}}_3}{\partial x_3}&=-\frac{1}{RC}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaaya, T., Wang, S., Cescon, M. et al. Physics-lumped parameter based control oriented model of dielectric tubular actuator. Int J Intell Robot Appl 6, 397–413 (2022). https://doi.org/10.1007/s41315-021-00211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00211-1

Keywords

Navigation