Skip to main content
Log in

Corrections to Hawking radiation and Bekenstein-Hawking entropy of novel four-dimensional black holes in Gauss- Bonnet gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

A Publisher Correction to this article was published on 23 November 2021

This article has been updated

Abstract

We make use of the Hamilton–Jacobi and Parikh-Wilczek methods to investigate the Hawking radiation from the event horizon of a new charged anti-de Sitter black hole in four-dimensional Gauss-Bonnet gravity space–time. Both the tunneling rate of charged particles and the Bekenstein-Hawking entropy are evaluated. The emission spectrum is an impure thermal one and consistent with an underlying unitary theory. There is no difference between the emission rate of massive particle and that of massless one. The entropy is modified by a logarithmic term so that the area law of the black hole entropy is violated. It satisfies the first law of black hole thermodynamics and has the same expression as that calculated by Loop Quantum Gravity and String Theory. When the Gauss-Bonnet coupling coefficient is equal to zero, the logarithmic correction vanishes and the Bekenstein-Hawking relation in general relativity is recovered. So our results show the effects of the Gauss-Bonnet modified gravity on the Bekenstein-Hawking entropy and Hawking radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hawking, S.W.: Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  3. D. Glavan and C. Lin, Phys. Rev. Lett. 124: 081301 (2020)

  4. P. G. S. Fernandes, Phys. Lett. B 805: 135468 (2020). arXiv: gr-qc/2003.05491arXiv: gr-qc/2003.05491

  5. H. Lu and Y. Pang, Phys. Lett.B 809: 135717 (2020). arXiv:gr qc/2003.11552

  6. R.A.Hennigar, D. Kubizňák, R.B. Mann and C.Pollack, J. High Energy Phys. 07: 027 (2020). arXiv:gr-qc/2004.09472

  7. X. y. Qiao, O. Y. Liang, D. Wang, Q. Y. Pan and J. L. Jing, JHEP 2020(12):192 (2020)

  8. Guo, M.Y., Li, P.C.: Eur. Phys. J. C 80(6), 588 (2020)

    Article  ADS  Google Scholar 

  9. S.W. Wei and Y.X. Liu. Phys. Rev. D 101: 104018 (2020). arXiv:gr-qc/2003.14275v3

  10. K. Hegde, A. N. Kumara, C. L. A. Rizwan, K. M. Ajith and M. S. Ali, Thermodynamics, Phase Transition and Joule Thomson Expansion of novel 4-D Gauss Bonnet AdS Black Hole, arXiv: gr-qc/2003.08778

  11. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995)

    Article  ADS  Google Scholar 

  12. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Parikh, M.K.: Int. J. Mod. Phys. D 13, 2351 (2004)

    Article  ADS  Google Scholar 

  14. Zhang, J.Y., Zhao, Z.: J. High Energy Phys. 10, 55 (2005)

    Article  ADS  Google Scholar 

  15. Zhang, J.Y., Zhao, Z.: Nucl. Phys. B 725, 173 (2005)

    Article  ADS  Google Scholar 

  16. Jiang, Q.Q., Yang, S.Z., Li, H.L.: Chin. Phys. 14, 1736 (2005)

    Article  ADS  Google Scholar 

  17. Han, Y.W., Yang, S.Z.: Chin. Phys. Lett. 22, 2769 (2005)

    Article  ADS  Google Scholar 

  18. Ren, J., Zhao, Z., Gao, C.J.: Chin. Phys. Lett. 22, 2489 (2005)

    Article  ADS  Google Scholar 

  19. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 618, 14 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang, J.Y., Zhao, Z.: Mod. Phys. Lett. A 20, 1673 (2005)

    Article  ADS  Google Scholar 

  21. Yang, S.Z., Chen, D.Y.: Chin. Phys. Lett. 24, 39 (2007)

    Article  ADS  Google Scholar 

  22. Li, G.Q.: Europhys. Lett. 76, 203 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, J.Y., Fan, J.H.: Phys. Lett. B 648, 133 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liu, B., Wang, G., Liu, W.B.: Mod. Phys. Lett. A 23, 281 (2008)

    Article  ADS  Google Scholar 

  25. Niu, Z.F., Liu, W.B.: Chin. J. Phys. 46, 528 (2008)

    Google Scholar 

  26. Li, G.Q.: Mod. Phys. Lett. A 22, 209 (2007)

    Article  ADS  Google Scholar 

  27. Li, G.Q., Zhuang, Y.W.: Turk J Phys 44, 458 (2020)

    Article  Google Scholar 

  28. Li, G.Q., Mo, J.X.: Astrophys. Space Sci. 361, 251 (2016)

    Article  ADS  Google Scholar 

  29. Li, G.Q., Mo, J.X.: Gen. Relativ. Gravit. 49, 57 (2017)

    Article  ADS  Google Scholar 

  30. G. Q. Li, Chin. Phys. C 41: 045103 (2017)

  31. Li, R.: Europhys. Lett. 96, 60014 (2011)

    Article  ADS  Google Scholar 

  32. Li, G.Q., Ou, Y.Y., Lin, Z.T.: Lith. J. Phys. 59, 1 (2019)

    Article  Google Scholar 

  33. R. Kerner and R. B. Mann, Phys. Lett. B 665: 277 (2008). arXiv:hep-th/0803.2246v3]

  34. R. G. Cai, Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

  35. R. G. Cai, Phys. Lett. B 733: 183 (2014). arXiv:hep-th/1405.1246v1

  36. R. G. Cai, L. M. Cao and N. Ohta, J. High Energy Phys. 04: 082 (2010). arXiv:hep-th/0911.4379v2

  37. G. Cognola, R. Myrzakulov, L. Sebastiani, and S. Zerbini, Phys. Rev. D 88: 024006 (2013)

  38. A. Strominger and C. Vafa, Phys. Lett. B 379: 99 (1996). arXiv:hep-th/9601029

  39. S. N. Solodukhin, Phys. Rev. D 57: 2410 (1998). arXiv:hep-th/9701106

  40. C. Rovelli, Phys. Rev. Lett. 77: 3288 (1996). arXiv:gr-qc/9603063

  41. A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Phys. Rev. Lett. 80: 904 (1998). arXiv:gr-qc/9710007

  42. R. K. Kaul and P. Majumdar, Phys. Rev. Lett. 84: 5255 (2000). arXiv:gr-qc/9710007

  43. M. Arzano, A. J. M. Medved and E. C. Vagenas, J. High Energy Phys. 09:037 (2005). arXiv:hep-th/0505266v2

Download references

Acknowledgements

The research is supported by Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021A1515010246). It is also supported by the Education Department of Guangdong Province (Grant Nos. 2017KZDXM056) and the ‘Climbing Program’ Special Funds of Guangdong (Grant Nos. pdjh2020b0362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu-Qiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GQ., Mo, JX. & Zhuang, YW. Corrections to Hawking radiation and Bekenstein-Hawking entropy of novel four-dimensional black holes in Gauss- Bonnet gravity. Gen Relativ Gravit 53, 97 (2021). https://doi.org/10.1007/s10714-021-02863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02863-7

Keywords

Navigation