Skip to main content
Log in

Excitation Features of Surface Acoustic Waves by Interdigital Transducer in Piezoelectric Crystals

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The mathematical models of a long electrode with finite cross-section dimensions, an electrode pair and an interdigital transducer in the excitation mode of surface acoustic waves in Z-sections of piezoelectric crystals of the 6mm crystallographic class are proposed in this article. The accounting of finite dimensions of the electrodes cross-section makes corrections in the numerical values of the synchronism frequency and the level of radiated surface waves. The analytical expressions are obtained and the effect of the electrode cross-section dimensions in electrode pair on the synchronism frequency, the amplitude of the surface acoustic wave, and the module of wave characteristic of interdigital transducer are investigated. We prove that at zero electrode thickness, the maximum displacement level in surface acoustic wave is of 9.75%, and for the square electrode section is 37.25% less than the value obtained by the δ-sources method. At the same time, the synchronism frequency decreases by 9% in the first case. With the electrode thickness equal to the half-width, the real value of synchronism frequency is of 21.7%, and the surface wave amplitude is 33.1% less than in the case of the δ-sources method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. C. Caliendo, M. Hamidullah, "Guided acoustic wave sensors for liquid environments," J. Phys. D Appl. Phys., v.52, n.15, p.153001 (2019). DOI: https://doi.org/10.1088/1361-6463/aafd0b.

    Article  Google Scholar 

  2. C. Caliendo, M. Hamidullah, "Pressure sensing with zero group velocity lamb modes in self-supported a-SiC/c-ZnO membranes," J. Phys. D Appl. Phys., v.51, n.38, p.385102 (2018). DOI: https://doi.org/10.1088/1361-6463/aad6f3.

    Article  Google Scholar 

  3. A. Mujahid, F. L. Dickert, "Surface acoustic wave (SAW) for chemical sensing applications of recognition layers," Sensors (Switzerlad), v.17, n.12, p.2716 (2017). DOI: https://doi.org/10.3390/s17122716.

    Article  Google Scholar 

  4. Y. Zhang, F. Yang, Z. Sun, Y.-T. Li, G.-J. Zhang, "A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay," Analyst, v.142, n.18, p.3468 (2017). DOI: https://doi.org/10.1039/C7AN00988G.

    Article  Google Scholar 

  5. A. Marcu, C. Viespe, "Surface acoustic wave sensors for hydrogen and deuterium detection," Sensors, v.17, n.6, p.1417 (2017). DOI: https://doi.org/10.3390/s17061417.

    Article  Google Scholar 

  6. W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, J. K. Luo, "Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer," Sci. Reports, v.4, n.1, p.7206 (2015). DOI: https://doi.org/10.1038/srep07206.

    Article  Google Scholar 

  7. A. C. Poveda, D. D. Bühler, A. C. Sáez, P. V. Santos, M. M. de Lima, "Semiconductor optical waveguide devices modulated by surface acoustic waves," J. Phys. D Appl. Phys., v.52, n.25, p.253001 (2019). DOI: https://doi.org/10.1088/1361-6463/ab1464.

    Article  Google Scholar 

  8. M. Weiß, H. J. Krenner, "Interfacing quantum emitters with propagating surface acoustic waves," J. Phys. D Appl. Phys., v.51, n.37, p.373001 (2018). DOI: https://doi.org/10.1088/1361-6463/aace3c.

    Article  Google Scholar 

  9. A. V. Varlamov, V. V. Lebedev, P. M. Agruzov, I. V. Ilichev, L. V. Shamrai, A. V. Shamrai, "Acousto-optic frequency shift modulators with acoustic and optic waveguides on X-cut lithium niobate substrates," J. Phys. Conf. Ser., v.1326, p.012011 (2019). DOI: https://doi.org/10.1088/1742-6596/1326/1/012011.

    Article  Google Scholar 

  10. E. D. S. Nysten, Y. H. Huo, H. Yu, G. F. Song, A. Rastelli, H. J. Krenner, "Multi-harmonic quantum dot optomechanics in fused LiNbO3–(Al)GaAs hybrids," J. Phys. D Appl. Phys., v.50, n.43, p.43LT01 (2017). DOI: https://doi.org/10.1088/1361-6463/aa861a.

    Article  Google Scholar 

  11. R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, F. Calle, "Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates," J. Phys. D Appl. Phys., v.51, n.20, p.204004 (2018). DOI: https://doi.org/10.1088/1361-6463/aab8bd.

    Article  Google Scholar 

  12. P. Delsing, A. N. Cleland, M. J. A. Schuetz, J. Knörzer, G. Giedke, J. I. Cirac, K. Srinivasan, M. Wu, K. C. Balram, C. Bäuerle, T. Meunier, C. J. B. Ford, P. V. Santos, E. Cerda-Méndez, H. Wang, H. J. Krenner, E. D. S. Nysten, M. Weiß, G. R. Nash, L. Thevenard, C. Gourdon, P. Rovillain, M. Marangolo, J.-Y. Duquesne, G. Fischerauer, W. Ruile, A. Reiner, B. Paschke, D. Denysenko, D. Volkmer, A. Wixforth, H. Bruus, M. Wiklund, J. Reboud, J. M. Cooper, Y. Fu, M. S. Brugger, F. Rehfeldt, C. Westerhausen, "The 2019 surface acoustic waves roadmap," J. Phys. D Appl. Phys., v.52, n.35, p.353001 (2019). DOI: https://doi.org/10.1088/1361-6463/ab1b04.

    Article  Google Scholar 

  13. J. H. Kuypers, A. P. Pisano, "Green’s function analysis of Lamb wave resonators," in 2008 IEEE Ultrasonics Symposium (IEEE, 2008). DOI: https://doi.org/10.1109/ULTSYM.2008.0377.

    Chapter  Google Scholar 

  14. V. K. Tewary, "Green’s-function method for modeling surface acoustic wave dispersion in anisotropic material systems and determination of material parameters," Wave Motion, v.40, n.4, p.399 (2004). DOI: https://doi.org/10.1016/j.wavemoti.2004.02.007.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Nama, R. Barnkob, Z. Mao, C. J. Kähler, F. Costanzo, T. J. Huang, "Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves," Lab a Chip, v.15, n.12, p.2700 (2015). DOI: https://doi.org/10.1039/C5LC00231A.

    Article  Google Scholar 

  16. T. Wang, R. Green, R. Nair, M. Howell, S. Mohapatra, R. Guldiken, S. Mohapatra, "Surface acoustic waves (SAW)-based biosensing for quantification of cell growth in 2D and 3D cultures," Sensors, v.15, n.12, p.32045 (2015). DOI: https://doi.org/10.3390/s151229909.

    Article  Google Scholar 

  17. S. Padilla, E. Tufekcioglu, R. Guldiken, "Simulation and verification of polydimethylsiloxane (PDMS) channels on acoustic microfluidic devices," Microsyst. Technol., v.24, n.8, p.3503 (2018). DOI: https://doi.org/10.1007/s00542-018-3760-2.

    Article  Google Scholar 

  18. K. M. M. Kabir, G. I. Matthews, Y. M. Sabri, S. P. Russo, S. J. Ippolito, S. K. Bhargava, "Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device," Smart Mater. Struct., v.25, n.3, p.035040 (2016). DOI: https://doi.org/10.1088/0964-1726/25/3/035040.

    Article  Google Scholar 

  19. T. Wang, R. Green, R. Guldiken, J. Wang, S. Mohapatra, S. S. Mohapatra, "Finite element analysis for surface acoustic wave device characteristic properties and sensitivity," Sensors, v.19, n.8, p.1749 (2019). DOI: https://doi.org/10.3390/s19081749.

    Article  Google Scholar 

  20. K.-C. Park, J. R. Yoon, "Transmission line matrix modeling for analysis of surface acoustic wave hydrogen sensor," Japanese J. Appl. Phys., v.50, n.7, p.07HD06 (2011). DOI: https://doi.org/10.1143/JJAP.50.07HD06.

    Article  Google Scholar 

  21. T. Kojima, H. Obara, K. Shibayama, "Investigation of impulse response for an interdigital surface-acoustic-wave transducer," Japanese J. Appl. Phys., v.29, n.S1, p.125 (1990). DOI: https://doi.org/10.7567/JJAPS.29S1.125.

    Article  Google Scholar 

  22. T. Hoang, "SAW parameters analysis and equivalent circuit of SAW device," in Acoustic Waves - From Microdevices to Helioseismology (InTech, 2011). DOI: https://doi.org/10.5772/19910.

    Chapter  Google Scholar 

  23. T. Kojima, K. Shibayama, "An analysis of an equivalent circuit model for an interdigital surface-acoustic-wave transducer," Japanese J. Appl. Phys., v.27, n.S1, p.163 (1988). DOI: https://doi.org/10.7567/JJAPS.27S1.163.

    Article  Google Scholar 

  24. I. V. Linchevskyi, "Excitation of surface acoustic waves in a Z-section of piezoelectric crystals by the electric field of a long electrode," Int. J. Appl. Phys., v.6, n.3, p.42 (2019). DOI: https://doi.org/10.14445/23500301/IJAP-V6I3P108.

    Article  Google Scholar 

  25. I. V. Linchevskyi, O. N. Petrischev, "Surface acoustic waves in Z-sections of piezoelectric monocrystals of hexagonal syngony," Radioelectron. Commun. Syst., v.63, n.3, p.156 (2020). DOI: https://doi.org/10.3103/S0735272720030048.

    Article  Google Scholar 

  26. D. Morgan, Surface Acoustic Wave Filters (Academic Press, 2007). URI: https://www.elsevier.com/books/surface-acoustic-wave-filters/morgan/978-0-12-372537-0.

    Google Scholar 

  27. L. Wang, H. Wang, "Analysis of propagation characteristics of AlN/diamond/Si layered SAW resonator," Microsyst. Technol., v.26, n.4, p.1273 (2020). DOI: https://doi.org/10.1007/s00542-019-04658-y.

    Article  Google Scholar 

  28. T. J. Matula, P. L. Marston, "Electromagnetic acoustic wave transducer for the generation of acoustic evanescent waves on membranes and optical and capacitor wave-number selective detectors," J. Acoust. Soc. Am., v.93, n.4, p.2221 (1993). DOI: https://doi.org/10.1121/1.406683.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Linchevskyi.

Ethics declarations

ADDITIONAL INFORMATION

I. V. Linchevskyi

The author declares that he has no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021080033 with DOI: https://doi.org/10.20535/S0021347021080033

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 8, pp. 489-501, July, 2021 https://doi.org/10.20535/S0021347021080033 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linchevskyi, I.V. Excitation Features of Surface Acoustic Waves by Interdigital Transducer in Piezoelectric Crystals. Radioelectron.Commun.Syst. 64, 426–439 (2021). https://doi.org/10.3103/S0735272721080033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721080033

Navigation