Skip to main content
Log in

MacWilliams extension property for arbitrary weights on linear codes over module alphabets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The first author recently proved the extension theorem for linear codes over integer residue rings equipped with the Lee or the Euclidean weight by introducing a determinant criterion that is dual to earlier approaches. In this paper we generalize his techniques to the context of linear codes over an alphabet that is a finite pseudo-injective module with a cyclic socle and is equipped with an arbitrary weight. The main theorem is a criterion for the weight to have the extension property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Arf C.: Untersuchungen über quadratische Formen in Körpern der Charakteristik \(2\). I. J. Reine Angew. Math. 183, 148–167 (1941). https://doi.org/10.1515/crll.1941.183.148.

    Article  MathSciNet  MATH  Google Scholar 

  2. Barra A., Gluesing-Luerssen H.: MacWilliams extension theorems and the local-global property for codes over Frobenius rings. J. Pure Appl. Algebra 219(4), 703–728 (2015). https://doi.org/10.1016/j.jpaa.2014.04.026.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogart K., Goldberg D., Gordon J.: An elementary proof of the MacWilliams theorem on equivalence of codes. Inf. Control 37(1), 19–22 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantinescu I.: Lineare Codes über Restklassringen ganzer Zahlen und ihre Automorphismen bezüglich einer verallgemeinerten Hamming-Metrik. Ph.D. thesis, Techniche Universität München, München (1995).

  5. Constantinescu I., Heise W.: A metric for codes over residue class rings of integers. Probl. Peredachi Inf. 33(3), 22–28 (1997).

    MathSciNet  MATH  Google Scholar 

  6. Dinh H.Q., López-Permouth S.R.: On the equivalence of codes over finite rings. Appl. Algebra Eng. Commun. Comput. 15(1), 37–50 (2004). https://doi.org/10.1007/s00200-004-0149-5.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dinh H.Q., López-Permouth S.R.: On the equivalence of codes over rings and modules. Finite Fields Appl. 10(4), 615–625 (2004). https://doi.org/10.1016/j.ffa.2004.01.001.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dyshko S.: Geometric approach to the MacWilliams extension theorem for codes over module alphabets. Appl. Algebra Eng. Commun. Comput. 28(4), 295–309 (2017). https://doi.org/10.1007/s00200-017-0324-0.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyshko S.: When the extension property does not hold. J. Algebra Appl. 16(5), 1750098 (2017). https://doi.org/10.1142/S0219498817500980.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dyshko S.: The extension theorem for Lee and Euclidean weight codes over integer residue rings. Des. Codes Cryptogr. 87(6), 1253–1269 (2019). https://doi.org/10.1007/s10623-018-0521-2.

    Article  MathSciNet  MATH  Google Scholar 

  11. ElGarem N., Megahed N., Wood J.A.: The extension theorem with respect to symmetrized weight compositions. In: ElGarem N. (ed.) Coding Theory and Applications, CIM Series in Mathematical Science, vol. 3, p. 177. Springer, Cham (2015).

    Chapter  Google Scholar 

  12. Gnilke O.W., Greferath M., Honold T., Wood J.A., Zumbrägel J.: The extension theorem for bi-invariant weights over Frobenius rings and Frobenius bimodules. In: Leroy A., Lomp C., López-Permouth S., Oggier F. (eds.) Rings, Modules and Codes, Contemporary Mathematics, vol. 727, pp. 117–129. American Mathematical Society, Providence (2019). https://doi.org/10.1090/conm/727/14629.

    Chapter  MATH  Google Scholar 

  13. Goldberg D.Y.: A generalized weight for linear codes and a Witt-MacWilliams theorem. J. Comb. Theory Ser. A 29(3), 363–367 (1980). https://doi.org/10.1016/0097-3165(80)90032-1.

    Article  MathSciNet  MATH  Google Scholar 

  14. Greferath M.: Orthogonality matrices for modules over finite Frobenius rings and MacWilliams’ equivalence theorem. Finite Fields Appl. 8(3), 323–331 (2002). https://doi.org/10.1006/ffta.2001.0343.

    Article  MathSciNet  MATH  Google Scholar 

  15. Greferath M., Schmidt S.E.: Finite-ring combinatorics and MacWilliams’s equivalence theorem. J. Comb. Theory Ser. A 92(1), 17–28 (2000). https://doi.org/10.1006/jcta.1999.3033.

    Article  MathSciNet  MATH  Google Scholar 

  16. Greferath M., Nechaev A., Wisbauer R.: Finite quasi-Frobenius modules and linear codes. J. Algebra Appl. 3(3), 247–272 (2004). https://doi.org/10.1142/S0219498804000873.

    Article  MathSciNet  MATH  Google Scholar 

  17. Greferath M., Mc Fadden C., Zumbrägel J.: Characteristics of invariant weights related to code equivalence over rings. Des. Codes Cryptogr. 66(1–3), 145–156 (2013). https://doi.org/10.1007/s10623-012-9671-9.

    Article  MathSciNet  MATH  Google Scholar 

  18. Greferath M., Honold T., Mc Fadden C., Wood J.A., Zumbrägel J.: MacWilliams’ extension theorem for bi-invariant weights over finite principal ideal rings. J. Comb. Theory Ser. A 125, 177–193 (2014). https://doi.org/10.1016/j.jcta.2014.03.005.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994). https://doi.org/10.1109/18.312154.

    Article  MATH  Google Scholar 

  20. Kurakin V.L., Kuzmin A.S., Markov V.T., Mikhalev A.V., Nechaev A.A.: Linear codes and polylinear recurrences over finite rings and modules (a survey). In: Fossorier M., Imai H., Lin S., Poli A. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Honolulu, HI, 1999), Lecture Notes in Computer Science, vol. 1719, pp. 365–391. Springer, Berlin (1999). https://doi.org/10.1007/3-540-46796-3_36.

    Chapter  Google Scholar 

  21. MacWilliams F.J.: Error-correcting codes for multiple-level transmission. Bell Syst. Tech. J. 40, 281–308 (1961). https://doi.org/10.1002/j.1538-7305.1961.tb03986.x.

    Article  MathSciNet  Google Scholar 

  22. MacWilliams F.J.: Combinatorial Problems of Elementary Abelian Groups. ProQuest LLC, Ann Arbor (1962). Thesis (Ph.D.)–Radcliffe College. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0260595

  23. Ward H.N., Wood J.A.: Characters and the equivalence of codes. J. Comb. Theory Ser. A 73(2), 348–352 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  24. Witt E.: Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176, 31–44 (1937). https://doi.org/10.1515/crll.1937.176.31.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wood J.A.: Witt’s extension theorem for mod four valued quadratic forms. Trans. Am. Math. Soc. 336(1), 445–461 (1993). https://doi.org/10.2307/2154354.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wood J.A.: Extension theorems for linear codes over finite rings. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Toulouse, 1997), Lecture Notes in Computer Science, vol. 1255, pp. 329–340. Springer, Berlin (1997)

  27. Wood J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121(3), 555–575 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. Wood J.A.: Weight functions and the extension theorem for linear codes over finite rings. In: Mullen G.L., Shiue P.J.-S. (eds.) Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997), Contemporary Mathematics, vol. 225, pp. 231–243. American Mathematical Society, Providence (1999). https://doi.org/10.1090/conm/225/03225.

    Chapter  Google Scholar 

  29. Wood J.A.: Code equivalence characterizes finite Frobenius rings. Proc. Am. Math. Soc. 136(2), 699–706 (2008). https://doi.org/10.1090/S0002-9939-07-09164-2.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wood J.A.: Foundations of linear codes defined over finite modules: the extension theorem and the MacWilliams identities. In: Solé P. (ed.) Codes Over Rings (Ankara, 2008), Series Coding Theory Cryptology, vol. 6, pp. 124–190. World Science Publishing, Hackensack (2009). https://doi.org/10.1142/9789812837691_0004.

    Chapter  Google Scholar 

  31. Wood J.A.: Two approaches to the extension problem for arbitrary weights over finite module alphabets. Appl. Algebra Eng. Commun. Comput. (2020). https://doi.org/10.1007/s00200-020-00465-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Wood.

Additional information

In memoriam: Vera Pless, 1931–2020.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyshko, S., Wood, J.A. MacWilliams extension property for arbitrary weights on linear codes over module alphabets. Des. Codes Cryptogr. 90, 2683–2701 (2022). https://doi.org/10.1007/s10623-021-00945-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00945-w

Keywords

Mathematics Subject Classification

Navigation