Issue 43, 2021

Preparation and piezoelectric catalytic performance of flexible inorganic Ba1−xCaxTiO3via electrospinning

Abstract

Piezoelectric catalysis is an emerging research field in recent years. Since the catalytic reaction usually occurs on the surface, the specific surface area is very important for piezoelectric catalysis. Therefore, nanoparticles and nanowires have been developed for piezoelectric catalysis and have attracted widespread attention. However, in actual water applications, the use of nanoparticles will cause secondary pollution. Therefore, an overall deformable nanoporous system is urgently needed to adapt to the shapes of various ultrasonic transducer heads. We have obtained macroscopically inorganic flexible barium titanate nanofiber membranes through electrospinning technology. Without traditional organic mixtures, the surface of the piezoelectric material can fully come into contact with water. The fiber membrane is macroscopically integrated, deformable, and can fully adapt to multiple ultrasonic transducers of various shapes. Calcium doping can effectively improve the catalytic effect, and the catalytic rate (k × 103) of the material with the highest doping concentration can reach 24.47 min−1. In addition, studies have found that lowering the calcination temperature can effectively improve the flexibility of the fiber membrane, which can be attributed to smaller barium titanate grains formed at low temperature. This work provides a generic method for preparing flexible inorganic piezoelectric materials that can be adapted to a variety of surfaces, and successfully applies it in the field of piezoelectric catalysis, which provides an important way for the practical research of piezoelectric catalysis in the future.

Graphical abstract: Preparation and piezoelectric catalytic performance of flexible inorganic Ba1−xCaxTiO3via electrospinning

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2021
Accepted
14 Sep 2021
First published
30 Sep 2021

J. Mater. Chem. A, 2021,9, 24695-24703

Preparation and piezoelectric catalytic performance of flexible inorganic Ba1−xCaxTiO3via electrospinning

Y. Yu, X. Wang, G. Xie, J. Ma, T. Lv, K. Du, H. Hu, J. Zhang, Y. Li, Y. Long, K. Ruan and S. Ramakrishna, J. Mater. Chem. A, 2021, 9, 24695 DOI: 10.1039/D1TA05151B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements