Skip to main content
Log in

Thermodynamic Aspects of the Use of Elementary Fluorine as the Fluorinating Agent

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The fluorination of elementary substances and inorganic and organic compounds with elementary fluorine is accompanied by high heat release (of about hundreds of kilojoules per mol of fluorine), which determines the high probability of their implementation in the unsteady-state temperature mode (combustion or thermal explosion mode) when the temperature of the process products is close to adiabatic, and a significant part of the released heat is removed from the obtained substances outside the reaction zone. If target fluorides are present in the thermodynamically equilibrium mixture of substances in an element system that contains fluorine at a temperature close to the adiabatic temperature, fluorination in the combustion mode is successfully used in industry. Otherwise, it is reasonable to perform fluorination in the steady-state (close to isothermal) temperature mode by removing the heat of the reaction from the reacting mixture directly in the reaction zone. This publication considers the efficiency of application of the steady- and unsteady-state temperature modes in the fluorination of various substances with elementary fluorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Belov, G.V., Modeling of the equilibrium states of multicomponent heterogeneous systems, Mat. Model., 2005, vol. 17, no. 2, p. 81.

    Google Scholar 

  2. Vatolin, N.A., Moiseev, G.K., and Trusov, B.G., Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh (Thermodynamic Modeling in High-Temperature Inorganic Systems), Moscow: Metallurgiya, 1994.

  3. Ishikawa, N. and Kobayashi, Y., Ftor. Khimiya i primenenie (Fluorine: Chemistry and Applications), Moscow: Mir, 1982.

  4. Pashkevich, D.S., Mukhortov, D.A., Petrov, V.B., Alekseev, Yu.I., Asovich, V.S., and Barabanov, V.G., Synthesis of tetrafluoromethane by graphite fluorination with elemental fluorine, Russ. J. Appl. Chem., 2004, vol. 77, no. 1, pp. 92–97. https://doi.org/10.1023/B:RJAC.0000024584.69292.6d

    Article  CAS  Google Scholar 

  5. Pashkevich, D.S. and Alekseev, Yu.I., A technology for the production of sulfur tetrafluoride in a falling-bed reactor with simultaneous dosing of sulfur and fluorine, Tezisy dokladov. 1 Mezhdunarodnyi sibirskii seminar “Sovremennye neorganicheskie ftoridy, Intersibfluorine- 2003” (Abstracts of Papers Presented at the 1st International Siberian Seminar “Modern Inorganic Fluorides, Intersibfluorine-2003”), Novosibirsk, 2003, p. 10.

  6. Snegirev, A.Yu., Osnovy teorii goreniya (Fundamentals of the Theory of Combustion), Moscow: Politekh. Univ., 2014.

  7. Kantorovich, B.V., Osnovy teorii goreniya i gazifikatsii tverdogo topliva (Fundamentals of the Theory of Solid Fuel Combustion and Gasification), Moscow: Akad. Nauk SSSR, 1958.

  8. Lisienko, V.G., Shchelokov, Ya.M., and Ladygichev, M.G., Toplivo. Ratsional’noe szhiganie, upravlenie i tekhnologicheskoe ispol’zovanie: spravochnik v 3 kn. (Fuel: Efficient Combustion, Management, and Technological Use: A Handbook in Three Volumes), Moscow: Teplotekhnik, 2003.

  9. Pashkevich, D.S., Shelopin, G.G., Mukhortov, D.A., Petrov, V.B., Alekseev, Yu.I., and Asovich, V.S., Synthesis of perfluoroalkanes by high-temperature reaction of graphite with fluorine in a fluidized bed, Russ. J. Appl. Chem., 2004, vol. 77, no. 11, pp. 1847–1853. https://doi.org/10.1007/s11167-005-0174-6

    Article  CAS  Google Scholar 

  10. Pashkevich, D.S., Shelopin, G.G., Alekseev, Yu.I., and Mit’kin, V.N., Effect of the intensification of transport processes on the parameters of the synthesis of carbon polyfluoride, Tezisy dokladov. 2 Mezhdunarodnyi sibirskii seminar “Sovremennye neorganicheskie ftoridy, Intersibfluorine-2006” (Abstracts of Papers Presented at the 2nd International Siberian Seminar “Modern Inorganic Fluorides, Intersibfluorine-2006”), Tomsk, 2006, p. 362.

  11. Pashkevich, D.S., Mukhortov, D.A., Alekseev, Yu.I., Asovich, V.S., Kambur, M.P., Lantratova, O.V., et al., New aspects of a wasteless technology for the production of high-purity nitrogen trifluoride by the fluorination of the melt of ammonium hydrogen fluoride with fluorine, Tezisy dokladov. 2 Mezhdunarodnyi sibirskii seminar “Sovremennye neorganicheskie ftoridy, Intersibfluorine-2006” (Abstracts of Papers Presented at the 2nd International Siberian Seminar “Modern Inorganic Fluorides, Intersibfluorine-2006”), Tomsk, 2006, p. 222.

  12. Pashkevich, D.S., Barabanov, V.G., and Maksimov, B.N., Development and introduction of industrial technologies for the production of fluorine compounds using elemental fluorine, in Pamyati B.V. Gidaspova. Nauchnye chteniya (Scientific Readings Dedicated to the Memory of B.V. Gidaspov), St. Petersburg: Teza, 2008, pp. 169–177.

  13. Kharitonov, A.P. and Loginov, B.A., Direct fluorination of polymer final products: From fundamental study to practical application, Russ. J. Gen. Chem., 2009, vol. 79, pp. 635–641. https://doi.org/10.1134/S1070363209030451

    Article  CAS  Google Scholar 

  14. Kambur, P.S., Pashkevich, D.S., Petrov, V.B., Alekseev, Yu.I., Yampol’skii, Yu.P., and Alent’ev, A.Yu., Gas-liquid fluorination of 1,1,1,2-tetrafluoroethane and methane with elemental fluorine in a perfluorinated liquid, Russ. J. Appl. Chem., 2019, vol. 92, no. 7, pp. 958–963. https://doi.org/10.1134/S1070427219070127

    Article  CAS  Google Scholar 

  15. Kambur, P.S., Pashkevich, D.S., Alekseev, Yu.I., Yampolskii, Yu.P., and Alentev, A.Yu., Interaction of perfluorinated fluids with fluorine in gas-liquid reactor, Russ. J. Appl. Chem., 2019, vol. 92, no. 5, pp. 661–666. https://doi.org/10.1134/S1070427219050124

    Article  CAS  Google Scholar 

  16. Blinov, I., Mukhortov, D., Yampolskii, Y., Belov, N., Alentiev, A., Chirkov, S., Bondarenko, G., Kostina, Y., Legkov, S., Perepuchov, A., Kambur, M., Kambur, P., Kapustin, V., Vozniuk, O., and Kurapova, E., Direct fluorination of poly-2,6-dimethyl-1,4-phenylene oxide in perfluorinated liquid medium, J. Fluorine Chem., 2020, vol. 234, article no. 109526. https://doi.org/10.1016/j.jfluchem.2020.109526

    Article  CAS  Google Scholar 

  17. Pashkevich, D.S., Muhortov, D.A., Podpalkina, E.A., and Barabanov, V.G., Kinetics of gaseous fluorination of 1,1,1,2-tetrafluoroethane with elemental fluorine, J. Fluorine Chem., 1999, vol. 96, no. 1, pp. 3–5. https://doi.org/10.1016/S0022-1139(98)00332-7

    Article  CAS  Google Scholar 

  18. Pashkevich, D.S., Mukhortov, D.A., Alekseev, Yu.I., and Asovich, V.S., Production of fluorinated ethanes using elemental fluorine, Russ. J. Appl. Chem., 2002, vol. 75, pp. 1269–1274. https://doi.org/10.1023/A:1020904809795

    Article  CAS  Google Scholar 

  19. Pashkevich, D.S., Mukhortov, D.A., Alekseev, Yu.I., Asovich, V.S., and Rozhdestvenskaya, O.V., Gas-phase fluorination of fluoroethanes with elemental fluorine, Russ. J. Appl. Chem., 2001, vol. 74, no. 7, pp. 1151–1155. https://doi.org/10.1023/A:1013023102787

    Article  CAS  Google Scholar 

  20. Turaev, N.S. and Zherin, I.I., Khimiya i tekhnologiya urana (The Chemistry and Technology of Uranium), Moscow: TsNIIAtominform, 2005.

  21. Butov, V.G., Solonenko, V.A., Zyatikov, P.N., Demidenko, A.A., Galata, A.A., Kotov, S.A., Rudnikov, A.I., Peshkichev, Yu.E., and Ledovskikh, K.A., Pilot tests of a flame reactor with the modernized introduction of process fluorine, Izv. Vyssh. Uchebn. Zaved., Fiz., 2012, vol. 55, no. 9 (3), p. 30.

  22. Zyatikov, P.N., Demidenko, A.A., Butov, V.G., Solonenko, V.A., Lazarchuk, V.V., Ledovskikh, A.K., et al., RF Patent 2456242, 2012.

  23. Mikheev, V.P., Gazovoe toplivo i ego szhiganie: uchebnoe posobie (Gas Fuel and Its Combustion: A Textbook), Leningrad: Nedra, 1966.

  24. Dytnerskii, Yu.I., Brykov, V.P., and Kagramanov, G.G., Membrannoe razdelenie gazov (Membrane Separation of Gases), Moscow: Khimiya, 1991.

  25. Maksimov, B.N., Barabanov, V.G., Serushkin, I.L., et al., Promyshlennye ftororganicheskie produkty. Spravochnik (Industrial Organofluorine Products: A Handbook), Leningrad: Khimiya, 1990.

  26. Avdulov, G.I., Korolev, V.L., Maslichenko, A.P., et al., USSR Inventor’s Certificate no. 295070.

  27. Sukhoverkhov, V.F., Shishkov, V.D., and Alenchikova, I.F., Khimiya galoidnykh soedinenii ftora (The Chemistry of Fluorine Halides), Moscow: Nauka, 1968.

  28. Shrewsberry, R.C. and Williamson, E.L., Chemistry of the chlorine trifluoride-uranyl fluoride reaction, J. Inorg. Nucl. Chem., 1966, vol. 28, no. 11, pp. 2535–2539. https://doi.org/10.1016/0022-1902(66)80377-9

    Article  CAS  Google Scholar 

  29. Kinkead, S.A., Asprey, L.B., and Eller, P.G., Low temperature synthesis of chlorine pentafluoride using dioxygen difluoride, J. Fluorine Chem., 1985, vol. 29, no. 4, pp. 459–462. https://doi.org/10.1016/S0022-1139(00)85110-6

    Article  CAS  Google Scholar 

  30. Frank-Kamenetskii, D.A., Osnovy makrokinetiki. Diffuziya i teploperedacha v khimicheskoi kinetike (Fundamentals of Macrokinetics: Diffusion and Heat Transfer in Chemical Kinetics), Dolgoprudny: Intellekt, 2008, 4th ed.

  31. Pashkevich, D.S., Kambur, P.S., Mukhortov, D.A., Petrov, V.B., and Alekseev, Yu. I., Research of the heat and mass exchange features of gas saturation into gas-liquid apparatus with high-speed agitator in a flow circuit, Russ. J. Appl. Chem., 2009, vol. 82, no. 9, pp. 1565–1569. https://doi.org/10.1134/S1070427209090110

    Article  CAS  Google Scholar 

  32. Pashkevich, D.S., Alekseev, Yu.I., Moiseenko, A.A., and Radchenko, S.M., Heat exchange of dynamic powder beds with a heat-transfer surface. I. A helical screw conveyer and a horizontal rotating cylinder, J. Eng. Phys. Thermophys., 1999, vol. 72, no. 1, pp. 1–6. https://doi.org/10.1007/BF02699056

    Article  CAS  Google Scholar 

  33. Pashkevich, D.S., Krasnokutskii, V.N., Petrov, V.B., and Korolev, V.L., Heat exchange of dynamic powder beds with a heat-transfer surface. II. A dust-laden gas flow, J. Eng. Phys. Thermophys., 1999, vol. 72, no. 1, pp. 7–10. https://doi.org/10.1007/BF02699057

    Article  CAS  Google Scholar 

  34. Pashkevich, D.S., Alekseev, Yu.I., Asovich, V.S., Mashkov, Yu.V., and Mamaev, V.V., Nitrogen trifluoride: The most promising carrier of fluorine for silicon etching processes in the semiconductor industry, Tezisy dokladov. 1 Mezhdunarodnyi sibirskii seminar “Sovremennye neorganicheskie ftoridy, Intersibfluorine-2003” (Abstracts of Papers Presented at the 1st International Siberian Seminar “Modern Inorganic Fluorides, Intersibfluorine-2003”), Novosibirsk, 2003, p. 159.

  35. Nazarov, V.G., Structure and composition of the surface layer in polymers modified by elemental fluorine, J. Appl. Polym. Sci., 2005, vol. 95, no. 4, p. 897.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within project FSWW-2020-0020 with the support from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Pashkevich.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashkevich, D.S., Kambur, P.S., Kapustin, V.V. et al. Thermodynamic Aspects of the Use of Elementary Fluorine as the Fluorinating Agent. Theor Found Chem Eng 55, 677–687 (2021). https://doi.org/10.1134/S0040579521030167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521030167

Keywords:

Navigation