Skip to main content
Log in

Dynamics of Heat and Mass Transfer during the Injection of Dispersed Adsorbent into Steam-Gas Flow

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Physical and mathematical simulation of the process of adsorption of gas components on the adsorbent injected into the steam-air flow in a cylindrical tube and Venturi tube was carried out. Calculated estimates of CO2 adsorption on aluminosilicate with a mass median particle size of 50 µm were carried out using the phase equilibrium coefficient found by the authors in [1] by comparing the calculated and experimental data from [2]. The analysis of adsorption process under the considered conditions is carried out and practical conclusions were made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Shilyaev, M.I. and Khromova, E.M., Modeling of CO2 adsorption from the flue gases of thermal power plants in a packed column, Materialy XVIII Mezhdunarodnoi nauchnoi konferentsii “Kachestvo vnutrennego vozdukha i okruzhayushchei sredy” (Proc. XVIII International Scientific Conference “Quality of Internal Air and the Environment ”), Moscow, 2020, p. 13.

  2. Kumar, V., Labhsetwar, N., Meshram, S., and Rayalu, S., Functionalized fly ash based alumino-silicates for capture of carbon dioxide, Energy Fuels, 2011, vol. 25, p. 4854.

    Article  CAS  Google Scholar 

  3. Rashidi, N.A. and Yusup, S., Overview on the potential of coal-based bottom ash as low-cost adsorbents, ACS Sustainable Chem. Eng., 2016, vol. 4, no. 4, pp. 1870–1884. https://doi.org/10.1021/acssuschemeng.5b01437

    Article  CAS  Google Scholar 

  4. Lin, R.-B., Shih, S.-M., and Liu, C.-F., Structural properties and reactivities of Ca(OH)2/fly ash sorbents for flue gas desulfurization, Ind. Eng. Chem. Res., 2003, vol. 42, p. 1350.

    Article  CAS  Google Scholar 

  5. Adamczuk, A. and Kołodyńska, D., Utilization of fly ashes from the coal burning processes to produce effective low-cost sorbents, Energy Fuels, 2017, vol. 31, no. 2, pp. 2095–2105. https://doi.org/10.1021/acs.energyfuels.6b02921

    Article  CAS  Google Scholar 

  6. Sanna, A. and Maroto-Valer, M.M., CO2 capture at high temperature using fly ash-derived sodium silicates, Ind. Eng. Chem. Res., 2016, vol. 55, no. 14, pp. 4080–4088. https://doi.org/10.1021/acs.iecr.5b04780

    Article  CAS  Google Scholar 

  7. Lu, G.-Q. and Do, D.D., Adsorption properties of fly ash for NOx removal from flue gases, Fuel Process. Technol., 1991, vol. 27, p. 95.

    Article  CAS  Google Scholar 

  8. Tsuchial, H., Ishizuka, T., Nakamura, H., Veno, T., and Hattori, H., Removal of sulfur dioxide from flue gas by the absorbent prepared from coal ash: Effects of nitrogen oxide and water vapor, Ind. Eng. Chem. Res., 1996, vol. 35, p. 851.

    Article  Google Scholar 

  9. Garea, A., Viguri, J.R., and Irabien, J.A., Desulfurization rate at low temperatures using calcium hydroxide and fly ash, Coal Sci. Technol., 1995, vol. 24, p. 1863.

    Article  CAS  Google Scholar 

  10. Feng, Y., Jiang, J., Li, K., Tian, S., Liu, Z., Shi, J., Chen, X., Fei, Z., and Lu, Y., Cyclic performance of waste-derived SiO2 stabilized, CaO-based sorbents for fast CO2 capture, ACS Sustainable Chem. Eng., 2016, vol. 4, no. 12, pp. 7004–7012. https://doi.org/10.1021/acssuschemeng.6b01903

    Article  CAS  Google Scholar 

  11. Garea, A., Renedo, M.J., Fernandez, J., Ortiz, M.I., Viguri, J.R., and Irabien, J.A., Desulfurization yield of calcium hydroxide/fly-ash mixtures. Thermogravimetric determination, Thermochim. Acta, 1996, vol. 286, no. 1, p. 173.

    Article  CAS  Google Scholar 

  12. Irabien, A., Cortabitarte, F., Viguri, J., and Ortiz, M.I., Kinetic model for desulfurization at low temperatures using calcium hydroxide, Chem. Eng. Sci., 1990, vol. 45, p. 3427. https://doi.org/10.1016/0009-2509(90)87148-L

    Article  CAS  Google Scholar 

  13. Ortiz, M.I., Garea, A., Irabien, A., and Cortabitarte, F., Flue gas desulfurization at low temperatures. Characterization of the structural changes in the solid sorbent, Powder Technol., 1993, vol. 75, no. 2, p. 167. https://doi.org/10.1016/0032-5910(93)80078-O

    Article  CAS  Google Scholar 

  14. Irabien, A., Cortabitarte, F., and Ortiz, M.I., Kinetics of flue gas desulfurization at low temperatures: Nonideal surface adsorption model, Chem. Eng. Sci., 1992, vol. 47, no. 7, p. 1533. https://doi.org/10.1016/0009-2509(92)85002-S

    Article  CAS  Google Scholar 

  15. Muzio, L.J. and Offien, G.R., Assessment of dry sorbent emission control technologies Part I. Fundamental processes, J. Air Pollut. Control Assoc., 1987, vol. 37, no. 5, p. 642.

    CAS  Google Scholar 

  16. Klingspor, J., Karlsson, H., and Bjerle, I., A kinetic study of the dry SO2-limestone reaction at low temperature, Chem. Eng. Commun., 1983, vol. 22, nos. 1–2, p. 81.

    Article  CAS  Google Scholar 

  17. Peterson, J.R. and Rochelle, G.T., Aqueous reaction of fly ash and calcium hydroxide to produce calcium silicate absorbent for flue gas desulfurization, Environ. Sci. Technol., 1988, vol. 22, no. 11, p. 1299.

    Article  CAS  Google Scholar 

  18. Jorgensen, C., Chang, J.C.S., and Brna, T.G., Evaluation of sorbents and additives for dry SO2 removal, Environ. Prog., 1987, vol. 6, no. 2, p. 26.

    Article  CAS  Google Scholar 

  19. Shvab, V.A., The flow of a compressible dust-gas medium in tubes, in several thermal and structural regimes, J. Eng. Phys., 1969, vol. 16, no. 5, pp. 572–578. https://doi.org/10.1007/BF00827384

    Article  Google Scholar 

  20. Bogoslovskii, V.N. and Poz, M.Ya., Teplofizika apparatov utilizatsii tepla sistem otopleniya, ventilyatsii i konditsionirovaniya vozdukha (Thermal Physics of Apparatuses for Heat Recovery in Heating, Ventilation, and Air Conditioning Systems), Moscow: Stroiizdat, 1983.

  21. Ramm, V.M., Absorbtsiya gazov (Gas Absorption), Moscow: Khimiya, 1976, 2nd ed.

  22. Shilyaev, M.I. and Khromova, E.M., Modeling of heat and mass transfer and absorption-condensation dust and gas cleaning in jet scrubbers, Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling, Nakajima, H., Ed., London: IntechOpen, 2013, p. 163. https://doi.org/10.5772/53094

  23. Shilyaev, M.I., Khromova, E.M., Bogomolov, A.R., and Shirokova, S.N., Adaptation of a model for absorptive gas cleaning in jet scrubbers for chemisorption processes, Izv. Vyssh. Uchebn. Zaved., Stroit., 2015, no. 3, p. 52.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Shilyaev.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilyaev, M.I., Khromova, E.M. Dynamics of Heat and Mass Transfer during the Injection of Dispersed Adsorbent into Steam-Gas Flow. Theor Found Chem Eng 55, 688–698 (2021). https://doi.org/10.1134/S0040579521030209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521030209

Keywords:

Navigation