Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies

Abstract

TDP-43 proteinopathy is linked to neurodegenerative diseases that feature synaptic loss in the cortex and hippocampus, although it remains unclear how TDP-43 regulates mature synapses. We report that, in adult mouse hippocampus, TDP-43 knockdown, but not overexpression, induces robust structural and functional damage to excitatory synapses, supporting a role for TDP-43 in maintaining mature synapses. Dendritic spine loss induced by TDP-43 knockdown is rescued by wild-type TDP-43, but not ALS/FTLD-associated mutants, suggesting a common TDP-43 functional deficiency in neurodegenerative diseases. Interestingly, M337V and A90V mutants also display dominant negative activities against WT TDP-43, partially explaining why M337V transgenic mice develop hippocampal degeneration similar to that in excitatory neuronal TDP-43 knockout mice, and why A90V mutation is associated with Alzheimer’s disease. Further analyses reveal that a TDP-43 knockdown-induced reduction in GluN2A contributes to synaptic loss. Our results show that loss of TDP-43 function underlies hippocampal and cortical synaptic degeneration in TDP-43 proteinopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transient TDP-43 knockdown, not overexpression, significantly reduced mature excitatory synapses in rat hippocampus.
Fig. 2: TDP-43 knockdown in mouse hippocampus damaged excitatory synapses and impaired hippocampus-dependent cognitive function.
Fig. 3: Both GRD and RRM domains were necessary for TDP-43 to maintain hippocampal excitatory synapses.
Fig. 4: Disease-associated TDP-43 mutants lost their functional capability to maintain hippocampal synapses.
Fig. 5: Different dominant negative mechanisms underlay M337V and A90V phenotypes.
Fig. 6: TDP-43 shRNA-induced downregulation of NMDA receptors contributed to dendritic spine loss.

Similar content being viewed by others

References

  1. Chen-Plotkin AS, Lee VM-Y, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol. 2010;6:211–20.

    Article  CAS  Google Scholar 

  2. Lee EB, Lee VM-Y, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2012;13:38–50.

    Article  CAS  Google Scholar 

  3. Guo L, Shorter J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb Perspect Med. 2017;7:a024554.

    Article  Google Scholar 

  4. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14:459–68.

    Article  CAS  Google Scholar 

  5. Cohen TJ, Lee VM, Trojanowski JQ. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med. 2011;17:659–67.

    Article  CAS  Google Scholar 

  6. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.

    Article  CAS  Google Scholar 

  7. Kwong LK, Neumann M, Sampathu DM, Lee VM-Y, Trojanowski JQ. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 2007;114:63–70.

    Article  CAS  Google Scholar 

  8. Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM-Y. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol. 2007;64:1388–94.

    Article  Google Scholar 

  9. Kwong LK, Uryu K, Trojanowski JQ, Lee VM-Y. TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals. 2008;16:41–51.

    Article  CAS  Google Scholar 

  10. Buratti E. Functional significance of TDP-43 mutations in disease. Adv Genet. 2015;91:1–53.

    Article  CAS  Google Scholar 

  11. Watanabe S, Oiwa K, Murata Y, Komine O, Sobue A, Endo F, et al. ALS-linked TDP-43 M337V knock-in mice exhibit splicing deregulation without neurodegeneration. Mol Brain. 2020;13:8.

    Article  CAS  Google Scholar 

  12. Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P, et al. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet. 2010;19:671–83.

    Article  CAS  Google Scholar 

  13. Xu Z, Yang C. TDP-43—The key to understanding amyotrophic lateral sclerosis. Rare Dis. 2014;2:e944443.

    Article  Google Scholar 

  14. Broeck LV, Callaerts P, Dermaut B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med. 2014;20:66–71.

    Article  Google Scholar 

  15. Wu L-S, Cheng W-C, Chen C-Y, Wu M-C, Wang Y-C, Tseng Y-H, et al. Transcriptomopathies of pre-and post-symptomatic frontotemporal dementia-like mice with TDP-43 depletion in forebrain neurons. Acta Neuropathol Commun. 2019;7:50.

    Article  CAS  Google Scholar 

  16. Aoki N, Murray ME, Ogaki K, Fujioka S, Rutherford NJ, Rademakers R, et al. Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol. 2015;129:53–64.

    Article  CAS  Google Scholar 

  17. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 2016;131:571–85.

    Article  CAS  Google Scholar 

  18. Berning BA, Walker AK. The pathobiology of TDP-43 C-terminal fragments in ALS and FTLD. Front Neurosci. 2019;13:335.

    Article  Google Scholar 

  19. Wilson AC, Dugger BN, Dickson DW, Wang D-S. TDP-43 in aging and Alzheimer’s disease-a review. Int J Clin. 2011;4:147.

    CAS  Google Scholar 

  20. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 2014;127:811–24.

    Article  CAS  Google Scholar 

  21. Brouwers N, Bettens K, Gijselinck I, Engelborghs S, Pickut BA, Van Miegroet H, et al. Contribution of TARDBP to Alzheimer’s disease genetic etiology. J Alzheimer’s Dis. 2010;21:423–30.

    Article  CAS  Google Scholar 

  22. Broeck LV, Kleinberger G, Chapuis J, Gistelinck M, Amouyel P, Van Broeckhoven C, et al. Functional complementation in Drosophila to predict the pathogenicity of TARDBP variants: evidence for a loss-of-function mechanism. Neurobiol Aging. 2015;36:1121–9.

    Article  Google Scholar 

  23. Janssens J, Wils H, Kleinberger G, Joris G, Cuijt I, Ceuterick-de Groote C, et al. Overexpression of ALS-associated p. M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol. 2013;48:22–35.

    Article  CAS  Google Scholar 

  24. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009;106:18809–14.

    Article  CAS  Google Scholar 

  25. Arnold ES, Ling S-C, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA. 2013;110:E736–E745.

    Article  CAS  Google Scholar 

  26. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–91.

    Article  CAS  Google Scholar 

  27. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71.

    Article  CAS  Google Scholar 

  28. Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J Neurosci. 2010;30:8083–95.

    Article  CAS  Google Scholar 

  29. Knobloch M, Mansuy IM. Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol Neurobiol. 2008;37:73–82.

    Article  CAS  Google Scholar 

  30. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci. 2013;14:401–16.

    Article  CAS  Google Scholar 

  31. Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, et al. TDP‐43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J. 2016;35:2350–70.

    Article  CAS  Google Scholar 

  32. Lu Y, Ferris J, Gao F-B. Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain. 2009;2:30.

    Article  Google Scholar 

  33. Herzog JJ, Deshpande M, Shapiro L, Rodal AA, Paradis S. TDP-43 misexpression causes defects in dendritic growth. Sci Rep. 2017;7:1–13.

    Article  Google Scholar 

  34. Herzog JJ, Xu W, Deshpande M, Rahman R, Suib H, Rodal AA, et al. TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression. Proc Natl Acad Sci USA. 2020;117:11760–9.

    Article  CAS  Google Scholar 

  35. Chen Y, Wang Y, Ertürk A, Kallop D, Jiang Z, Weimer RM, et al. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron. 2014;83:431–43.

    Article  CAS  Google Scholar 

  36. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.

    Article  CAS  Google Scholar 

  37. François-Moutal L, Perez-Miller S, Scott DD, Miranda V, Mollasalehi N, Khanna M. Structural insights into TDP-43 proteinopathy. Front Mol Neurosci. 2019;12:301.

    Article  Google Scholar 

  38. Janssens J, Van, Broeckhoven C. Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD–ALS spectrum disorders. Hum Mol Genet. 2013;22:R77–R87.

    Article  CAS  Google Scholar 

  39. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25.

    Article  CAS  Google Scholar 

  40. Wright GS, Watanabe TF, Amporndanai K, Plotkin SS, Cashman NR, Antonyuk SV, et al. Purification and structural characterization of aggregation-prone human TDP-43 involved in neurodegenerative diseases. Iscience. 2020;23:101159.

  41. Pesiridis GS, Lee VM-Y, Trojanowski JQ. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet. 2009;18:R156–R162.

    Article  CAS  Google Scholar 

  42. Zhang Y-J, Caulfield T, Xu Y-F, Gendron TF, Hubbard J, Stetler C, et al. The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet. 2013;22:3112–22.

    Article  CAS  Google Scholar 

  43. Sasaguri H, Chew J, Xu Y-F, Gendron TF, Garrett A, Lee CW, et al. The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo. Brain Res. 2016;1647:57–64.

    Article  CAS  Google Scholar 

  44. Fratta P, Sivakumar P, Humphrey J, Lo K, Ricketts T, Oliveira H, et al. Mice with endogenous TDP‐43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J. 2018;37:e98684.

    Article  Google Scholar 

  45. Klim JR, Williams LA, Limone F, San Juan IG, Davis-Dusenbery BN, Mordes DA, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22:167–79.

    Article  CAS  Google Scholar 

  46. Melamed ZE, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180–90.

    Article  CAS  Google Scholar 

  47. Swanson E, Breckenridge L, McMahon L, Som S, McConnell I, Bloom GS. Extracellular tau oligomers induce invasion of endogenous tau into the somatodendritic compartment and axonal transport dysfunction. J Alzheimer’s Dis. 2017;58:803–20.

    Article  CAS  Google Scholar 

  48. White MA, Kim E, Duffy A, Adalbert R, Phillips BU, Peters OM, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci. 2018;21:552–63.

    Article  CAS  Google Scholar 

  49. Tam OH, Rozhkov NV, Shaw R, Kim D, Hubbard I, Fennessey S, et al. Postmortem cortex samples identify distinct molecular subtypes of als: retrotransposon activation, oxidative stress, and activated glia. Cell Rep. 2019;29:1164–77.

    Article  CAS  Google Scholar 

  50. Majumder P, Chu J-F, Chatterjee B, Swamy KB, Shen C-KJ. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol. 2016;132:721–38.

    Article  CAS  Google Scholar 

  51. Romano M, Feiguin F, Buratti E. TBPH/TDP-43 modulates translation of Drosophila futsch mRNA through an UG-rich sequence within its 5′ UTR. Brain Res. 2016;1647:50–56.

    Article  CAS  Google Scholar 

  52. Neelagandan N, Gonnella G, Dang S, Janiesch PC, Miller KK, Küchler K, et al. TDP-43 enhances translation of specific mRNAs linked to neurodegenerative disease. Nucleic Acids Res. 2019;47:341–61.

    Article  CAS  Google Scholar 

  53. Freibaum BD, Chitta RK, High AA, Taylor JP. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res. 2010;9:1104–20.

    Article  CAS  Google Scholar 

  54. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347:150–60.

    Article  CAS  Google Scholar 

  55. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  Google Scholar 

  56. Franchini L, Carrano N, Di Luca M, Gardoni F. Synaptic GluN2A-containing NMDA receptors: from physiology to pathological synaptic plasticity. Int J Mol Sci. 2020;21:1538.

    Article  CAS  Google Scholar 

  57. Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE, Bennett DA, et al. Hippocampal sclerosis and TDP‐43 pathology in aging and A lzheimer disease. Ann Neurol. 2015;77:942–52.

    Article  CAS  Google Scholar 

  58. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain Res. 2019;142:1503–27.

    Google Scholar 

  59. Winton MJ, Van Deerlin VM, Kwong LK, Yuan W, Wood EM, Yu C-E, et al. A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro. FEBS Lett. 2008;582:2252–6.

    Article  CAS  Google Scholar 

  60. Zhang Z, Almeida S, Lu Y, Nishimura AL, Peng L, Sun D, et al. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS One. 2013;8:e76055.

    Article  CAS  Google Scholar 

  61. Corcia P, Valdmanis P, Millecamps S, Lionnet C, Blasco H, Mouzat K, et al. Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations. Neurology. 2012;78:1519–26.

    Article  CAS  Google Scholar 

  62. Watanabe S, Kaneko K, Yamanaka K. Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins. J Biol Chem. 2013;288:3641–54.

    Article  CAS  Google Scholar 

  63. Wu LS, Cheng WC, Hou SC, Yan YT, Jiang ST, Shen CKJ. TDP‐43, a neuro‐pathosignature factor, is essential for early mouse embryogenesis. Genesis. 2010;48:56–62.

    CAS  Google Scholar 

  64. Ebstein SY, Yagudayeva I, Shneider NA. Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP knockin mouse model of ALS. Cell Rep. 2019;26:364–73.

    Article  CAS  Google Scholar 

  65. Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell. 1998;92:279–89.

    Article  CAS  Google Scholar 

  66. Martel M-A, Ryan TJ, Bell KFS, Fowler JH, McMahon A, Al-Mubarak B, et al. The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron. 2012;74:543–56.

    Article  CAS  Google Scholar 

  67. Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 2013;19:62–75.

    Article  CAS  Google Scholar 

  68. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48:289–301.

    Article  CAS  Google Scholar 

  69. Punnakkal P, Jendritza P, Köhr GJN. Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function. Neuropharmacology. 2012;62: 1985–92.

  70. Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang T-M, Reynen P, et al. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron. 2016;89:983–99.

    Article  CAS  Google Scholar 

  71. Su T, Lu Y, Geng Y, Lu W, Chen Y. How could N-methyl-D-aspartate receptor antagonists lead to excitation instead of inhibition? Brain Sci Adv. 2018;4:73–98.

    Article  Google Scholar 

Download references

Acknowledgements

We, at the Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, thank the following agencies for their generous funding: Project supported by National Natural Science Foundation of China to YC (91849204, 31671044); National Program on Key Research Project of China to YC (2016YFA0501901); Shanghai Municipal Science and Technology Major Project to YC (Grant No. 2019SHZDZX02); Natural Science Foundation of Shanghai to GY (19ZR1468600, 201409003800). National Program on Key Basic Research Project of China to YZ (2016YFA0501900 and 2016YFA0501904), the National Natural Science Foundation of China to YZ (32071245 and 31671428), Natural Science Foundation of Shanghai to YZ (20ZR1474400), and the Shanghai Municipal Science and Technology Major Project (Grant no. 2019SHZDZX02) to YZ.

Author information

Authors and Affiliations

Authors

Contributions

Concept, design and supervision of the study: YC, YG. JN, YR performed all experiments and data analysis unless otherwise stated. JN, TS performed recording of cortical pyramidal cells in acute brain slices with patch clamp. JN, CF performed behavioral analysis. JN, YR, JZ, YL performed plasmids construction. YR, DL, JZ, YL performed RNAseq data analysis. YC, YG, YZ, YF, NL supervised the project and interpreted data. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yang Geng or Yelin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Ren, Y., Su, T. et al. Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Mol Psychiatry 28, 931–945 (2023). https://doi.org/10.1038/s41380-021-01346-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01346-0

This article is cited by

Search

Quick links