Skip to main content
Log in

Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect.

Objective

To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach.

Methods

This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses.

Results

189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L−1 (95% credible interval (CrI) 4.7–5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12–0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5–10 min [ES0.5 = 0.18 (0.13–0.24)] and > 10 min [ES0.5 = 0.22 (0.10–0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4–6 mmol L−1) and large (> 6 mmol L−1) compared with small (≤ 4 mmol L−1) [βSmall:Medium = 0.16 (95% CrI 0.02–0.32), βSmall:Large = 0.13 (95% CrI − 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [βSC:SB = 0.10 (95% CrI − 0.02 to 0.22)].

Conclusions

Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete’s decision as to whether supplementation with buffering agents might be beneficial for their specific aims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heibel AB, Perim PHL, Oliveira LF, McNaughton LR, Saunders B. Time to optimize supplementation: modifying factors influencing the individual responses to extracellular buffering agents. Front Nutr. 2018;5:35.

    PubMed  PubMed Central  Google Scholar 

  2. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    CAS  PubMed  Google Scholar 

  3. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49–94.

    CAS  PubMed  Google Scholar 

  4. Jarvis K, Woodward M, Debold EP, Walcott S. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. J Muscle Res Cell Motil. 2018;39:135–47.

    PubMed  Google Scholar 

  5. Sundberg CW, Hunter SK, Trappe SW, Smith CS, Fitts RH. Effects of elevated H(+) and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol. 2018;596(17):3993–4015.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. de Dias GFA, da Silva VE, Painelli VS, Sale C, Artioli GG, Gualano B, et al. (In)Consistencies in responses to sodium bicarbonate supplementation: a randomised, repeated measures, counterbalanced and double-blind study. PLoS ONE. 2015;10(11): e0143086.

    Google Scholar 

  7. Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9(4):627–32.

    PubMed  Google Scholar 

  8. Saunders B, Oliveira LF, Dolan E, Durkalec-Michalski K, McNaughton L, Artioli GG, et al. Sodium bicarbonate supplementation and the female athlete: a brief commentary with small scale systematic review and meta-analysis. Eur J Sport Sci. 2021;28:1–10.

    Google Scholar 

  9. Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41(10):801–14.

    PubMed  Google Scholar 

  10. Peart DJ, Siegler JC, Vince RV. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for athletic performance. J Strength Cond Res. 2012;26(7):1975–83.

    PubMed  Google Scholar 

  11. Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993;3(1):2–28.

    CAS  PubMed  Google Scholar 

  12. Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Effect of sodium bicarbonate on [HCO3−), pH, and gastrointestinal symptoms. Int J Sport Nutr Exerc Metab. 2011;21(3):189–94.

    CAS  PubMed  Google Scholar 

  13. Gough LA, Deb SK, Sparks SA, McNaughton LR. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. J Sports Sci. 2017;29:1–8.

    Google Scholar 

  14. Miller P, Robinson AL, Sparks SA, Bridge CA, Bentley DJ, McNaughton LR. The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. J Strength Cond Res. 2016;30(2):561–8.

    PubMed  Google Scholar 

  15. Boegman S, Stellingwerff T, Shaw G, Clarke N, Graham K, Cross R, et al. The impact of individualizing sodium bicarbonate supplementation strategies on world-class rowing performance. Front Nutr. 2020;7:138.

    PubMed  PubMed Central  Google Scholar 

  16. de Oliveira LF, Saunders B, Yamaguchi G, Swinton P, Artioli GG. Is individualization of sodium bicarbonate ingestion based on time to peak necessary? Med Sci Sport Exerc. 2020;52(8):1801–8.

    Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    PubMed  Google Scholar 

  18. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.

    PubMed  PubMed Central  Google Scholar 

  19. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.

    PubMed  PubMed Central  Google Scholar 

  20. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: l4898.

    PubMed  Google Scholar 

  21. Rakap S, Rakap S, Evran D, Cig O. Comparative evaluation of the reliability and validity of three data extraction programs: UnGraph, GraphClick, and DigitizeIt. Comput Hum Behav. 2016;55:159–66.

    Google Scholar 

  22. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. Beta-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658–69.

    PubMed  Google Scholar 

  23. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–41.

    CAS  PubMed  Google Scholar 

  24. Hobson RM, Saunders B, Ball G, Harris R, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43(1):25–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson MA, Mills DE, Brown PI, Sharpe GR. Prior upper body exercise reduces cycling work capacity but not critical power. Med Sci Sports Exerc. 2014;46(4):802–8.

    PubMed  Google Scholar 

  26. Kruschke JK, Liddell TM. The Bayesian New Statistics: hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev. 2018;25(1):178–206.

    PubMed  Google Scholar 

  27. Estrada E, Ferrer E, Pardo A. Statistics for evaluating pre-post change: relation between change in the distribution center and change in the individual scores. Front Psychol. 2019;9:2696.

    PubMed  PubMed Central  Google Scholar 

  28. Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat Method. 2009;8(2):597–9.

    Google Scholar 

  29. Fernandez-Castilla B, Jamshidi L, Declercq L, Beretvas SN, Onghena P, Van den Noortgate W. The application of meta-analytic (multi-level) models with multiple random effects: a systematic review. Behav Res Methods. 2020;11(52):2031–52.

    Google Scholar 

  30. Verardi V, Vermandele C. Univariate and multivariate outlier identification for skewed or heavy-tailed distributions. Stand Genom Sci. 2018;18(3):517–32.

    Google Scholar 

  31. Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):28.

    Google Scholar 

  32. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. Taylor & Francis; 2014.

    Google Scholar 

  33. McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61.

    PubMed  Google Scholar 

  34. Gaitanos GC, Nevill ME, Brooks S, Williams C. Repeated bouts of sprint running after induced alkalosis. J Sports Sci. 1991;9(4):355–70.

    CAS  PubMed  Google Scholar 

  35. Grgic J, Rodriguez RF, Garofolini A, Saunders B, Bishop DJ, Schoenfeld BJ, et al. Effects of sodium bicarbonate supplementation on muscular strength and endurance: a systematic review and meta-analysis. Sports Med. 2020;50(7):1361–75.

    PubMed  Google Scholar 

  36. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658–69.

    PubMed  Google Scholar 

  37. Dalle S, Koppo K, Hespel P. Sodium bicarbonate improves sprint performance in endurance cycling. J Sci Med Sport. 2021;24(3):301–6.

    PubMed  Google Scholar 

  38. Aragon S, Lapresa D, Arana J, Anguera MT, Garzon B. Tactical behaviour of winning athletes in major championship 1500-m and 5000-m track finals. Eur J Sport Sci. 2016;16(3):279–86.

    PubMed  Google Scholar 

  39. Tucker R, Lambert MI, Noakes TD. An analysis of pacing strategies during men’s world-record performances in track athletics. Int J Sports Physiol Perform. 2006;1(3):233–45.

    PubMed  Google Scholar 

  40. Requena B, Zabala M, Padial P, Feriche B. Sodium bicarbonate and sodium citrate: ergogenic aids? J Strength Cond Res. 2005;19(1):213–24.

    PubMed  Google Scholar 

  41. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):53–73.

    PubMed  Google Scholar 

  42. Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75(1):7–13.

    CAS  PubMed  Google Scholar 

  43. Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol. 2006;96(1):97–105.

    CAS  PubMed  Google Scholar 

  44. Edge EJ, Bishop D, Hill-Haas S, Dawson B, Goodman C. Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sport athletes. Eur J Appl Physiol. 2006;96(3):225–34.

    Google Scholar 

  45. Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed: a meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240.

    PubMed  PubMed Central  Google Scholar 

  46. Gough LA, Rimmer S, Osler CJ, Higgins MF. Ingestion of sodium bicarbonate (NaHCO3) following a fatiguing bout of exercise accelerates postexercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion. Int J Sport Nutr Exerc Metab. 2017;27(5):429–38.

    CAS  PubMed  Google Scholar 

  47. Jones RL, Stellingwerff T, Swinton P, Artioli GG, Saunders B, Sale C. Warm-up intensity does not affect the ergogenic effect of sodium bicarbonate in adult men. Int J Sport Nutr Exerc Metab. 2021;31(6):482–9.

    PubMed  Google Scholar 

  48. Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, et al. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR Biomed. 2013;26(11):1403–11.

    CAS  PubMed  Google Scholar 

  49. Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol (1985). 2006;101(3):918–25.

    CAS  Google Scholar 

  50. Wang J, Qiu J, Yi L, Hou Z, Benardot D, Cao W. Effect of sodium bicarbonate ingestion during 6 weeks of HIIT on anaerobic performance of college students. J Int Soc Sports Nutr. 2019;16(1):18.

    PubMed  PubMed Central  Google Scholar 

  51. Jones RL, Stellingwerff T, Artioli GG, Saunders B, Cooper S, Sale C. Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. Int J Sport Nutr Exerc Metab. 2016;26(5):445–53.

    CAS  PubMed  Google Scholar 

  52. Painelli VS, Lancha Junior AH. Thirty years of investigation on the ergogenic effects of sodium citrate: is it time for a fresh start? Br J Sports Med. 2018;52:942–3.

    Google Scholar 

  53. Urwin CS, Dwyer DB, Carr AJ. Induced alkalosis and gastrointestinal symptoms after sodium citrate ingestion: a dose-response investigation. Int J Sport Nutr Exerc Metab. 2016;26(6):542–8.

    CAS  PubMed  Google Scholar 

  54. Urwin CS, Snow RJ, Condo D, Snipe R, Wadley GD, Carr AJ. Factors influencing blood alkalosis and other physiological responses, gastrointestinal symptoms, and exercise performance following sodium citrate supplementation: a review. Int J Sport Nutr Exerc Metab. 2021;31(2):168.

    CAS  PubMed  Google Scholar 

  55. Marticorena FM, Carvalho A, de Oliveira LF, Dolan E, Gualano B, Swinton P, et al. Nonplacebo controls to determine the magnitude of ergogenic interventions: a systematic review and meta-analysis. Med Sci Sport Exerc. 2021;53(8):1766–77.

    Google Scholar 

  56. Saunders B, de Oliveira LF, da Silva RP, Painelli VS, Goncalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240–7.

    CAS  PubMed  Google Scholar 

  57. McNaughton L, Thompson D. Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fitness. 2001;41(4):456–62.

    CAS  Google Scholar 

  58. Russell C, Papadopoulos E, Mezil Y, Wells GD, Plyley MJ, Greenway M, et al. Acute versus chronic supplementation of sodium citrate on 200 m performance in adolescent swimmers. J Int Soc Sports Nutr. 2014;11:26.

    PubMed  PubMed Central  Google Scholar 

  59. Farney TM, MacLellan MJ, Hearon CM, Johannsen NM, Nelson AG. The effect of aspartate and sodium bicarbonate supplementation on muscle contractile properties among trained men. J Strength Cond Res. 2018;34(3):763–70.

    Google Scholar 

  60. Hall A, Aspe R, Craig T, Kavaliauskas M, Babraj J, Swinton P. The effects of sprint interval training on physical performance: a systematic review and meta-analysis. SportrXiv. 2021.

  61. Aedma M, Timpmann S, Oopik V. Dietary sodium citrate supplementation does not improve upper-body anaerobic performance in trained wrestlers in simulated competition-day conditions. Eur J Appl Physiol. 2015;115(2):387–96.

    CAS  PubMed  Google Scholar 

  62. Afman G, Garside RM, Dinan N, Gant N, Betts JA, Williams C. Effect of carbohydrate or sodium bicarbonate ingestion on performance during a validated basketball simulation test. Int J Sport Nutr Exerc Metab. 2014;24(6):632–44.

    CAS  PubMed  Google Scholar 

  63. Ansdell P, Dekerle J. Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol. J Strength Cond Res. 2017;34(5):1369–75.

    Google Scholar 

  64. Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha AH Jr, et al. Does sodium-bicarbonate ingestion improve simulated judo performance? Int J Sport Nutr Exerc Metab. 2007;17(2):206–17.

    CAS  PubMed  Google Scholar 

  65. Aschenbach W, Ocel J, Craft L, Ward C, Spangenburg E, Williams J. Effect of oral sodium loading on high-intensity arm ergometry in college wrestlers. Med Sci Sports Exerc. 2000;32(3):669–75.

    CAS  PubMed  Google Scholar 

  66. Ball D, Greenhaff PL, Maughan RJ. The acute reversal of a diet induced metabolic acidosis does not restore endurance capacity during high-intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):105–12.

    CAS  PubMed  Google Scholar 

  67. Ball D, Maughan RJ. The effect of sodium nitrate ingestion on the metabolic response to intense exercise following diet manipulation in man. Exp Physiol. 1997;82(6):1041–56.

    CAS  PubMed  Google Scholar 

  68. Bellinger PM, Howe ST, Shing CM, Fell JW. Effect of combined beta-alanine and sodiumbicarbonate supplementation on cycling performance. Med Sci Sports Exerc. 2012;44(8):1545–51.

    CAS  PubMed  Google Scholar 

  69. Bird SR, Wiles J, Robbins J. The effect of sodium bicarbonate ingestion on 1500-m racing time. J Sports Sci. 1995;13(5):399–403.

    CAS  PubMed  Google Scholar 

  70. Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sport Exerc. 2005;37(5):759–67.

    CAS  Google Scholar 

  71. Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36(5):807–13.

    CAS  PubMed  Google Scholar 

  72. Bouissou P, Defer G, Guezennec CY, Estrade PY, Serrurier B. Metabolic and blood catecholamine responses to exercise during alkalosis. Med Sci Sports Exerc. 1988;20(3):228–32.

    CAS  PubMed  Google Scholar 

  73. Brien DM, McKenzie DC. The effect of induced alkalosis and acidosis on plasma lactate and work output in elite oarsmen. Eur J Appl Physiol Occup Physiol. 1989;58(8):797–802.

    CAS  PubMed  Google Scholar 

  74. Brisola GMP, Miyagi WE, da Silva HS, Zagatto AM. Sodium bicarbonate supplementation improved MAOD but is not correlated with 200- and 400-m running performances: a double-blind, crossover, and placebo-controlled study. Appl Physiol Nutr Metab. 2015;40(9):931–7.

    CAS  PubMed  Google Scholar 

  75. Callahan MJ, Parr EB, Hawley JA, Burke LM. Single and combined effects of beetroot crystals and sodium bicarbonate on 4-km cycling time trial performance. Int J Sport Nutr Exerc Metab. 2017;27(3):171–8.

    Google Scholar 

  76. Campos EZ, Sangali EB, Neto JG, Gobbi RB, Freitas IF, Papoti M. Effects of sodium bicarbonate ingestion during an intermittent exercise on blood lactate, stroke parameters, and performance of swimmers. J Exerc Physiol Online. 2012;15(6):84–92.

    Google Scholar 

  77. Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2000-m rowing performance. Int J Sport Nutr Exerc Metab. 2011;21(5):357–64.

    CAS  PubMed  Google Scholar 

  78. Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Reliability and effect of sodium bicarbonate: buffering and 2000-m rowing performance. Int J Sports Physiol Perform. 2012;7(2):152–60.

    PubMed  Google Scholar 

  79. Carr BM, Webster MJ, Boyd JC, Hudson GM, Scheett TP. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol. 2013;113(3):743–52.

    CAS  PubMed  Google Scholar 

  80. Casarin CAS, Battazza RA, Lamolha MA, Kalytczak MM, Politti F, Evangelista AL, et al. Sodium bicarbonate supplementation improves performance in isometric fatigue protocol. Revista Brasileira de Medicina do Esporte. 2019;25(1):40–4.

    Google Scholar 

  81. Christensen PM, Petersen MH, Friis SN, Bangsbo J. Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers. Appl Physiol Nutr Metab. 2014;39(9):1058–63.

    CAS  PubMed  Google Scholar 

  82. Coombes J, McNaughton LR. Effects of bicarbonate ingestion on leg strength and power during isokinetic knee flexion and extension. J Strength Cond Res. 1993;7(4):241–9.

    Google Scholar 

  83. Coppoolse R, Barstow TJ, Stringer WW, Carithers E, Casaburi R. Effect of acute bicarbonate administration on exercise responses of COPD patients. Med Sci Sports Exerc. 1997;29(6):725–32.

    CAS  PubMed  Google Scholar 

  84. Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R, McConell GK, Bishop DJ, Lima-Silva AE, et al. Acidosis, but not alkalosis, affects anaerobic metabolism and performance in a 4-km time trial. Med Sci Sports Exerc. 2017;49(9):1899–910.

    CAS  PubMed  Google Scholar 

  85. Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W. Acid-base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med. 1984;5(5):228–31.

    CAS  PubMed  Google Scholar 

  86. Cox G, Jenkins DG. The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion. J Sports Sci. 1994;12(5):469–75.

    CAS  PubMed  Google Scholar 

  87. Cunha VCR, Aoki MS, Zourdos MC, Gomes RV, Barbosa WP, Massa M, et al. Sodium citrate supplementation enhances tennis skill performance: a crossover, placebo-controlled, double blind study. J Int Soc Sports Nutr. 2019;16(1):32.

    PubMed  PubMed Central  Google Scholar 

  88. da Silva RP, de Oliveira LF, Saunders B, de Andrade KC, de Salles PV, da Eira SV, et al. Effects of beta-alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise. Amino Acids. 2019;51(1):83–96.

    PubMed  Google Scholar 

  89. Dalle S, De Smet S, Geuns W, Rompaye BV, Hespel P, Koppo K. Effect of stacked sodium bicarbonate loading on repeated all-out exercise. Int J Sports Med. 2019;40(11):711–6.

    CAS  PubMed  Google Scholar 

  90. Danaher J, Gerber T, Wellard RM, Stathis CG. The effect of beta-alanine and NaHCO3 co-ingestion on buffering capacity and exercise performance with high-intensity exercise in healthy males. Eur J Appl Physiol. 2014;114(8):1715–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. De Araujo Dias GF, Eira Silva VD, Painelli VDS, Sale C, Artioli GG, Gualano B, et al. (In)consistencies in responses to sodium bicarbonate supplementation: a randomised, repeated measures, counterbalanced and double-blind study. PLoS ONE. 2015;10(11):1–13.

    Google Scholar 

  92. Deb SK, Gough LA, Sparks SA, McNaughton LR. Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. Eur J Appl Physiol. 2017;117(5):901–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Deb SK, Gough LA, Sparks SA, McNaughton LR. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. Eur J Appl Physiol. 2018;118(3):607–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Delextrat A, Mackessy S, Arceo-Rendon L, Scanlan A, Ramsbottom R, Calleja-Gonzalez J. Effects of three-day serial sodium bicarbonate loading on performance and physiological parameters during a simulated basketball test in Female University players. Int J Sport Nutr Exerc Metab. 2018;28(5):547–52.

    CAS  PubMed  Google Scholar 

  95. Do Bargieri JV, Berton DC, De Almeida AA, Garcia FA, Da Silva AC, Neder JA, et al. Effects of bicarbonate on oxyhaemoglobin desaturation and exercise performance in athletes. J Sports Med Phys Fitness. 2013;53(5):470–6.

    CAS  Google Scholar 

  96. Douroudos II, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A, et al. Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc. 2006;38(10):1746–53.

    CAS  PubMed  Google Scholar 

  97. Driller M, Williams A, Bellinger P, Howe S, Fell J. The effects of NaHCO 3 and NaCl loading on hematocrit and high-intensity cycling performance. J Exerc Physiol Online. 2012;15(1):47–56.

    Google Scholar 

  98. Driller MW, Gregory JR, Williams AD, Fell JW. The effects of serial and acute nahco3 loading in well-trained cyclists. J Strength Cond Res. 2012;26(10):2791–7.

    PubMed  Google Scholar 

  99. Driller MW, Gregory JR, Williams AD, Fell JW. The effects of chronic sodium bicarbonate ingestion and interval training in highly trained rowers. Int J Sport Nutr Exerc Metab. 2013;23(1):40–7.

    CAS  PubMed  Google Scholar 

  100. Ducker KJ, Dawson B, Wallman KE. Effect of beta alanine and sodium bicarbonate supplementation on repeated-sprint performance. J Strength Cond Res. 2013;27(12):3450–60.

    PubMed  Google Scholar 

  101. Duncan MJ, Weldon A, Price MJ. The effect of sodium bicarbonate ingestion on back squat and bench press exercise to failure. J Strength Cond Res. 2014;28(5):1358–66.

    PubMed  Google Scholar 

  102. Durkalec-Michalski K, Zawieja EE, Podgorski T, Loniewski I, Zawieja BE, Warzybok M, et al. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: a double-blind, randomized cross-over trial. PLoS ONE. 2018;13(5): e0197480-e.

    Google Scholar 

  103. Durkalec-Michalski K, Zawieja EE, Podgórski T, Zawieja BE, Michalowska P, Loniewski I, et al. The effect of a new sodium bicarbonate loading regimen on anaerobic capacity and wrestling performance. Nutrients. 2018;10(6):697.

    PubMed Central  Google Scholar 

  104. Durkalec-Michalski K, Zawieja EE, Zawieja BE, Michałowska P, Podgórski T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci Rep. 2020;10(1):1878.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Egger F, Meyer T, Such U, Hecksteden A. Effects of sodium bicarbonate on high-intensity endurance performance in cyclists: a double-blind, randomized cross-over trial. PLoS ONE. 2014;9(12): e114729-e.

    Google Scholar 

  106. Felippe LC, Lopes-Silva JP, Bertuzzi R, McGinley C, Lima-Silva AE. Separate and combined effects of caffeine and sodium-bicarbonate intake on judo performance. Int J Sports Physiol Perform. 2016;11(2):221–6.

    PubMed  Google Scholar 

  107. Feriche Fernández-Castanys B, Delgado Fernández M, Álvarez GJ. The effect of sodium citrate intake on anaerobic performance in normoxia and after sudden ascent to a moderate altitude. J Sport Med Phys Fit. 2002;42(2):179–85.

    Google Scholar 

  108. Ferreira LHB, Smolarek AC, Chilibeck PD, Barros MP, McAnulty SR, Schoenfeld BJ, et al. High doses of sodium bicarbonate increase lactate levels and delay exhaustion in a cycling performance test. Nutrition. 2019;60:94–9.

    CAS  PubMed  Google Scholar 

  109. Flinn S, Herbert K, Graham K, Siegler JC, Linn SAF, Erbert KAH, et al. Differential effect of metabolic alkalosis and hypoxia on high-intensity cycling performance. J Strength Cond Res. 2014;28(10):2852–8.

    PubMed  Google Scholar 

  110. Freis T, Hecksteden A, Such U, Meyer T. Effect of sodium bicarbonate on prolonged running performance: a randomized, double-blind, cross-over study. PLoS ONE. 2017;12(8): e0182158-e.

    Google Scholar 

  111. Gao J, Costill DL, Horswill CA, Park SH. Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol Occup Physiol. 1988;58(1–2):171–4.

    CAS  PubMed  Google Scholar 

  112. Goldfinch J, Mc Naughton L, Davies P. Induced metabolic alkalosis and its effects on 400-m racing time. Eur J Appl Physiol Occup Physiol. 1988;57(1):45–8.

    CAS  PubMed  Google Scholar 

  113. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG. Effect of acid-base balance on the growth hormone response to acute high- intensity cycle exercise. J Appl Physiol (1985). 1994;76(2):821–9.

    CAS  Google Scholar 

  114. Gough LA, Brown D, Deb SK, Sparks SA, McNaughton LR. The influence of alkalosis on repeated high-intensity exercise performance and acid-base balance recovery in acute moderate hypoxic conditions. Eur J Appl Physiol. 2018;118(12):2489–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gough LA, Deb SK, Sparks A, McNaughton LR. The reproducibility of 4-km time trial (TT) performance following individualised sodium bicarbonate supplementation: a randomised controlled trial in trained cyclists. Sports Med Open. 2017;3(1):34.

    PubMed  PubMed Central  Google Scholar 

  116. Gough LA, Deb SK, Sparks SA, McNaughton LR. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. J Sports Sci. 2018;36(15):1705–12.

    PubMed  Google Scholar 

  117. Gough LA, Rimmer S, Sparks SA, McNaughton LR, Higgins MF. Post-exercise supplementation of sodium bicarbonate improves acid base balance recovery and subsequent high-intensity boxing specific performance. Front Nutr. 2019;6:155.

    PubMed  PubMed Central  Google Scholar 

  118. Griffen C, Rogerson D, Ranchordas M, Ruddock A. Effects of creatine and sodium bicarbonate coingestion on multiple indices of mechanical power output during repeated wingate tests in trained men. Int J Sport Nutr Exerc Metab. 2015;25(3):298–306.

    CAS  PubMed  Google Scholar 

  119. Haug WB, Nibali ML, Drinkwater EJ, Zhang A, Chapman DW. Responses to sodium bicarbonate supplementation in repeat sprint activity are individual. Medicina Sportiva. 2016;2014(4):2434–40.

    Google Scholar 

  120. Hausswirth C, Bigard AX, Lepers R, Berthelot M, Guezennec CY. Sodium citrate ingestion and muscle performance in acute hypobaric hypoxia. Eur J Appl Physiol Occup Physiol. 1995;71(4):362–8.

    CAS  PubMed  Google Scholar 

  121. Higgins MF, James RS, Price MJ. The effects of sodium bicarbonate (NaHCO3) ingestion on high intensity cycling capacity. J Sport Sci. 2013;31(9):972–81.

    Google Scholar 

  122. Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Elliott-Sale KJ, et al. Effect of sodium bicarbonate supplementation on 2000-m rowing performance. Int J Sports Physiol Perform. 2014;9(1):139–44.

    PubMed  Google Scholar 

  123. Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Gualano B, et al. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance. Int J Sport Nutr Exerc Metab. 2013;23(5):480–7.

    CAS  PubMed  Google Scholar 

  124. Horswill CA, Costill DL, Fink WJ, Flynn MG, Kirwan JP, Mitchell JB, et al. Influence of sodium bicarbonate on sprint performance: relationship to dosage. Med Sci Sports Exerc. 1988;20(6):566–9.

    CAS  PubMed  Google Scholar 

  125. Hunter AM, De Vito G, Bolger C, Mullany H, Galloway SD. The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction. J Sports Sci. 2009;27(12):1261–9.

    PubMed  Google Scholar 

  126. Ibanez J, Pullinen T, Gorostiaga E, Postigo A, Mero A. Blood lactate and ammonia in short-term anaerobic work following induced alkalosis. J Sport Med Phys Fit. 1995;35(3):187–93.

    CAS  Google Scholar 

  127. Inbar O, Rotstein A, Jacobs I, Kaiser P, Dlin R, Dotan R. The effects of alkaline treatment on short-term maximal exercise. J Sport Sci. 1983;31:972–81.

    Google Scholar 

  128. Iwaoka K, Okagawa S, Mutoh Y, Miyashita M. Effects of bicarbonate ingestion on the respiratory compensation threshold and maximal exercise performance. Jpn J Physiol. 1989;39(2):255–65.

    CAS  PubMed  Google Scholar 

  129. Joyce S, Minahan C, Anderson M, Osborne M. Acute and chronic loading of sodium bicarbonate in highly trained swimmers. Eur J Appl Physiol. 2012;112(2):461–9.

    CAS  PubMed  Google Scholar 

  130. Katz A, Costill DL, King DS, Hargreaves M, Fink WJ. Maximal exercise tolerance after induced alkalosis. Int J Sports Med. 1984;5(2):107–10.

    CAS  PubMed  Google Scholar 

  131. Kilding AE, Overton C, Gleave J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int J Sport Nutr Exerc Metab. 2012;22(3):175–83.

    CAS  PubMed  Google Scholar 

  132. Kowalchuk JM, Heigenhauser GJFF, Jones NL. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(5):1558–63.

    CAS  PubMed  Google Scholar 

  133. Kowalchuk JM, Maltais SA, Yamaji K, Hughson RL. The effect of citrate loading on exercise performance, acid-base balance and metabolism. Eur J Appl Physiol Occup Physiol. 1989;58(8):858–64.

    CAS  PubMed  Google Scholar 

  134. Kozak-Collins K, Burke ER, Schoene RB. Sodium bicarbonate ingestion does not improve performance in women cyclists. Med Sci Sports Exerc. 1994;26(12):1510–5.

    CAS  PubMed  Google Scholar 

  135. Kraemer WJ, Harman FS, Vos NH, Gordon SE, Nindl BC, Marx JO, et al. Effects of exercise and alkalosis on serum insulin-like growth factor I and IGF-binding protein-3. Can J Appl Physiol Revue canadienne de physiologie appliquee. 2000;25(2):127–38.

    CAS  PubMed  Google Scholar 

  136. Kumstat M, Hlinsky T, Struhar I, Thomas A. does sodium citrate cause the same ergogenic effect as sodium bicarbonate on swimming performance? J Hum Kinet. 2018;65:89–98.

    PubMed  PubMed Central  Google Scholar 

  137. Kupcis PD, Slater GJ, Pruscino CL, Kemp JG. Influence of sodium bicarbonate on performance and hydration in lightweight rowing. Int J Sports Physiol Perform. 2012;7(1):11–8.

    PubMed  Google Scholar 

  138. Lambert CP, Greenhaff PL, Ball D, Maughan RJ. Influence of sodium bicarbonate ingestion on plasma ammonia accumulation during incremental exercise in man. Eur J Appl Physiol Occup Physiol. 1993;66(1):49–54.

    CAS  PubMed  Google Scholar 

  139. Lavender G, Bird SR. Effect of sodium bicarbonate ingestion upon repeated sprints. Br J Sports Med. 1989;23(1):41–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Light RW, Peng ME, Stansbitry DW, Sassoon CSH, Despars JA, Kccs MC. Effects of sodium bicarbonate administration on the exercise tolerance of normal subjects breathing through dead space. Chest. 1999;115(1):102–8.

    CAS  PubMed  Google Scholar 

  141. Linderman J, Kirk L, Musselman J, Dolinar B, Fahey TD. The effects of sodium bicarbonate and pyridoxine-alpha-ketoglutarate on short-term maximal exercise capacity. J Sports Sci. 1992;10(3):243–53.

    CAS  PubMed  Google Scholar 

  142. Lindh AM, Peyrebrune MC, Ingham SA, Bailey DM, Folland JP. Sodium bicarbonate improves swimming performance. Int J Sports Med. 2008;29(6):519–23.

    CAS  PubMed  Google Scholar 

  143. Linossier MT, Dormois D, Bregere P, Geyssant A, Denis C. Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. Eur J Appl Physiol Occup Physiol. 1997;76(1):48–54.

    CAS  PubMed  Google Scholar 

  144. Lopes-Silva JP, Da Silva Santos JF, Artioli GG, Loturco I, Abbiss C, Franchini E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur J Sport Sci. 2018;18(3):431–40.

    PubMed  Google Scholar 

  145. Macutkiewicz D, Sunderland C. Sodium bicarbonate supplementation does not improve elite women’s team sport running or field hockey skill performance. Physiol Rep. 2018;6(19): e13818-e.

    Google Scholar 

  146. Margaria R, Aghemo P, Sassi G. Effect of alkalosis on performance and lactate formation in supramaximal exercise. Internationale Zeitschrift fur angewandte Physiologie, einschliesslich Arbeitsphysiologie. 1971;29(3):215–23.

    CAS  PubMed  Google Scholar 

  147. Marriott M, Krustrup P, Mohr M. Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise. J Int Soc Sports Nutr. 2015;12:13.

    PubMed  PubMed Central  Google Scholar 

  148. Martins AN, Artioli GG, Franchini E. Sodium citrate ingestion increases glycolytic activity but does not enhance 2000 m rowing performance. J Hum Sport Exerc. 2010;5(3):411–7.

    Google Scholar 

  149. Marx JO, Gordon SE, Vos NH, Nindl BC, Gomez AL, Volek JS, et al. Effect of alkalosis on plasma epinephrine responses to high intensity cycle exercise in humans. Eur J Appl Physiol. 2002;87(1):72–7.

    CAS  PubMed  Google Scholar 

  150. Materko W, Santos EL, Novaes JDS. Effect of bicarbonate supplementation on the muscular strength. J Exerc Physiol Online. 2008;11(4):1–8.

    Google Scholar 

  151. Matsuura R, Arimitsu T, Kimura T, Yunoki T, Yano T. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints. Eur J Appl Physiol. 2007;101(4):409–17.

    CAS  PubMed  Google Scholar 

  152. McCartney N, Heigenhauser GJFF, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(1 I):225–9.

    CAS  PubMed  Google Scholar 

  153. McKenzie DC, Coutts KD, Stirling DR, Hoeben HH, Kuzara G. Maximal work production following two levels of artificially induced metabolic alkalosis. J Sports Sci. 1986;4(1):35–8.

    CAS  PubMed  Google Scholar 

  154. McLellan T, Jacobs I, Lewis W. Acute altitude exposure and altered acid-base states. Eur J Appl Physiol Occup Physiol. 1988;57(4):445–51.

    CAS  PubMed  Google Scholar 

  155. McNaughton L, Cedaro R, Mc Naughton L, Cedaro R. Sodium citrate ingestion and its effects on maximal anaerobic exercise of different durations. Eur J Appl Physiol Occup Physiol. 1992;64(1):36–41.

    CAS  PubMed  Google Scholar 

  156. McNaughton L, Curtin R, Goodman G, Perry D, Turner B, Showell C. Anaerobic work and power output during cycle ergometer exercise: effects of bicarbonate loading. J Sports Sci. 1991;9(2):151–60.

    CAS  PubMed  Google Scholar 

  157. McNaughton L, Dalton B, Palmer G. Sodium bicarbonate can be used as an ergogenic aid in high-intensity, competitive cycle ergometry of 1 h duration. Eur J Appl Physiol Occup Physiol. 1999;80(1):64–9.

    CAS  PubMed  Google Scholar 

  158. McNaughton LR. Sodium citrate and anaereobic performance: implifications of dosage. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):392–7.

    CAS  PubMed  Google Scholar 

  159. McNaughton LR. Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry. J Sports Sci. 1992;10(5):415–23.

    CAS  PubMed  Google Scholar 

  160. McNaughton LR. Sodium bicarbonate ingestion and its effects on anaerobic exercise of various durations. J Sports Sci. 1992;10(5):425–35.

    CAS  PubMed  Google Scholar 

  161. McNaughton LR, Cedaro R. The effect of sodium bicarbonate on rowing ergometer performance in elite rowers. Aust J Sci Med Sport. 1991;23(3):66–9.

    Google Scholar 

  162. McNaughton LR, Ford S, Newbold C. Effect of sodium bicarbonate ingestion on high intensity exercise in moderately trained women. J Strength Cond Res. 1997;11(2):98–102.

    Google Scholar 

  163. McNaughton LR, Siegler JC, Keatley S, Hillman A. The effects of sodium bicarbonate ingestion on maximal tethered treadmill running. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2011;170(1):33–9.

    Google Scholar 

  164. Mero AA, Hirvonen P, Saarela J, Hulmi JJ, Hoffman JR, Stout JR. Effect of sodium bicarbonate and beta-alanine supplementation on maximal sprint swimming. J Int Soc Sports Nutr. 2013;10(1):52.

    PubMed  PubMed Central  Google Scholar 

  165. Messonnier L, Kristensen M, Juel C, Denis C. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol. 2007;102(5):1936–44.

    CAS  PubMed  Google Scholar 

  166. Morris DM, Shafer RS, Fairbrother KR, Woodall MW. Effects of lactate consumption on blood bicarbonate levels and performance during high-intensity exercise. Int J Sport Nutr Exerc Metab. 2011;21(4):311–7.

    CAS  PubMed  Google Scholar 

  167. Mueller SM, Gehrig SM, Frese S, Wagner CA, Boutellier U, Toigo M. Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J Int Soc Sports Nutr. 2013;10(1):16.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Mundel T, Mündel T. Sodium bicarbonate ingestion improves repeated high-intensity cycling performance in the heat. Temperature (Austin, Tex). 2018;5(4):343–7.

    Google Scholar 

  169. Northgraves MJ, Peart DJ, Jordan CA, Vince RV. Effect of lactate supplementation and sodium bicarbonate on 40-km cycling time trial performance. J Strength Cond Res. 2014;28(1):273–80.

    PubMed  Google Scholar 

  170. Obmiński Z, Ładyga M, Tomaszewski W. the effect of pre-exercise oral administration of alkalizing mixture upon physical performance and post-exercise changes in blood biomarkers. Pol J Sports Med. 2016;32(4):209–16.

    Google Scholar 

  171. Oliveira LF, de Salles PV, Nemezio K, Goncalves LS, Yamaguchi G, Saunders B, et al. Chronic lactate supplementation does not improve blood buffering capacity and repeated high-intensity exercise. Scand J Med Sci Sports. 2017;27(11):1231–9.

    CAS  PubMed  Google Scholar 

  172. Oöpik V, Saaremets I, Medijainen L, Karelson K, Janson T, Timpmann S, et al. Effects of sodium citrate ingestion before exercise on endurance performance in well trained college runners. Br J Sports Med. 2003;37(6):485–9.

    PubMed  PubMed Central  Google Scholar 

  173. Oöpik V, Saaremets I, Timpmann S, Medijainen L, Karelson K, Oopik V, et al. Effects of acute ingestion of sodium citrate on metabolism and 5-km running performance: a field study. Can J Appl Physiol. 2004;29(6):691–703.

    PubMed  Google Scholar 

  174. Oöpik V, Timpmann S, Hackney AC, Kadak K, Medijainen L, Karelson K. Ingestion of sodium citrate suppresses aldosterone level in blood at rest and during exercise. Appl Physiol Nutr Metab. 2010;35(3):278–85.

    PubMed  Google Scholar 

  175. Oöpik V, Timpmann S, Kadak K, Medijainen L, Karelson K, Oopik V, et al. The effects of sodium citrate ingestion on metabolism and 1500-m racing time in trained female runners. J Sports Sci Med. 2008;7(1):125–31.

    PubMed  PubMed Central  Google Scholar 

  176. Painelli VS, Roschel H, Jesus F, Sale C, Harris RC, Solis MY, et al. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Appl Physiol Nutr Metab. 2013;38(5):525–32.

    CAS  Google Scholar 

  177. Painelli VSDS, Silva RP, de Oliveira Jr OM, De Oliveira LF, Benatti FB, Rabelo T, et al. The effects of two different doses of calcium lactate on blood pH, bicarbonate, and repeated high-intensity exercise performance. Int J Sport Nutr Exerc Metab. 2014;24(3):286–95.

    CAS  Google Scholar 

  178. Parry-Billings M, MacLaren DPM. The effect of sodium bicarbonate and sodium citrate ingestion on anaerobic power during intermittent exercise. Eur J Appl Physiol Occup Physiol. 1986;55(5):524–9.

    CAS  PubMed  Google Scholar 

  179. Peart DJ, McNaughton LR, Midgley AW, Taylor L, Towlson C, Madden LA, et al. Pre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. J Sci Med Sport. 2011;14(5):435–40.

    PubMed  Google Scholar 

  180. Peinado AB, Holgado D, Luque-Casado A, Rojo-Tirado MA, Sanabria D, Gonzalez C, et al. Effect of induced alkalosis on performance during a field-simulated BMX cycling competition. J Sci Med Sport. 2019;22(3):335–41.

    PubMed  Google Scholar 

  181. Peveler WW, Palmer TG. Effect of magnesium lactate dihydrate and calcium lactate monohydrate on 20-km cycling time trial performance. J Strength Cond Res. 2012;26(4):1149–53.

    PubMed  Google Scholar 

  182. Pierce EF, Eastman NW, Hammer WH, Lynn TD. Effect of induced alkalosis on swimming time trials. J Sports Sci. 1992;10(3):255–9.

    CAS  PubMed  Google Scholar 

  183. Portington KJ, Pascoe DD, Webster MJ, Anderson LH, Rutland RR, Gladden LB. Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc. 1998;30(4):523–8.

    CAS  PubMed  Google Scholar 

  184. Potteiger JA. The effects of buffer ingestion on metabolic factors related to distance running performance. Eur J Appl Physiol Occup Physiol. 1996;72(4):365–71.

    CAS  PubMed  Google Scholar 

  185. Potteiger JA, Nickel GL, Webster MJ, Haub MD, Palmer RJ. Sodium citrate ingestion enhances 30 km cycling performance. Int J Sports Med. 1996;17(1):7–11.

    CAS  PubMed  Google Scholar 

  186. Pouzash R, Azarbayjani M, Pouzesh J, Azali K, Fatolahi H. The effect of sodium bicarbonate supplement on lactic acid, ammonia and the performance of 400 meters male runners. Baltic J Health Phys Act. 2012;4(2):84–90.

    Google Scholar 

  187. Price MJ, Cripps D. The effects of combined glucose-electrolyte and sodium bicarbonate ingestion on prolonged intermittent exercise performance. J Sport Sci. 2012;30(10):975–83.

    Google Scholar 

  188. Price MJ, Simons C. The effect of sodium bicarbonate ingestion on high-intensity intermittent running and subsequent performance. J Strength Cond Res. 2010;24(7):1834–42.

    PubMed  Google Scholar 

  189. Pruscino CL, Ross MLR, Gregory JR, Savage B, Flanagan TR. Effects of sodium bicarbonate, caffeine, and their combination on repeated 200-m freestyle performance. Int J Sport Nutr Exerc Metab. 2008;18(2):116–30.

    CAS  PubMed  Google Scholar 

  190. Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol (1985). 2004;96(6):2050–6.

    CAS  Google Scholar 

  191. Rezaei S, Akbari K, Gahreman DE, Sarshin A, Tabben M, Kaviani M, et al. Caffeine and sodium bicarbonate supplementation alone or together improve karate performance. J Int Soc Sports Nutr. 2019;16(1):1–8.

    CAS  Google Scholar 

  192. Robergs R, Hutchinson K, Hendee S, Madden S, Siegler J. Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. Int J Sport Nutr Exerc Metab. 2005;15(1):59–74.

    CAS  PubMed  Google Scholar 

  193. Robertson RJ, Falkel JE, Drash AL, Swank AM, Metz KF, Spungen SA, et al. Effect of induced alkalosis on physical work capacity during arm and leg exercise. Ergonomics. 1987;30(1):19–31.

    CAS  PubMed  Google Scholar 

  194. Russ AE, Schifino AG, Leong CH. Effect of lactate supplementation on VO2peak and onset of blood lactate accumulation: a double-blind, placebo-controlled trial. Acta Gymnica. 2019;49(2):51–7.

    Google Scholar 

  195. Sale C, Saunders B, Hudson S, Wise JA, Harris RC, Sunderland CD. Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med Sci Sports Exerc. 2011;43(10):1972–8.

    CAS  PubMed  Google Scholar 

  196. Saunders B, Sale C, Harris RC, Sunderland C. Effect of sodium bicarbonate and beta-alanine on repeated sprints during intermittent exercise performed in hypoxia. Int J Sport Nutr Exerc Metab. 2014;24(2):196–205.

    CAS  PubMed  Google Scholar 

  197. Schabort EJ, Wilson G, Noakes TD. Dose-related elevations in venous pH with citrate ingestion do not alter 40-km cycling time-trial performance. Eur J Appl Physiol. 2000;83(4–5):320–7.

    CAS  PubMed  Google Scholar 

  198. Shave R, Whyte G, Siemann A, Doggart L. The effects of sodium citrate ingestion on 3,000-meter time-trial performance. J Strength Cond Res. 2001;15(2):230–4.

    CAS  PubMed  Google Scholar 

  199. Siegler J, Poulsen M, Nielsen NP, Kennedy D, Marshall P, Green S. The effect of metabolic acidosis on maximal force production and muscle recruitment during repeated, submaximal calf contractions to task failure. Faseb J. 2014. https://doi.org/10.1096/fasebj.28.1_supplement.705.11.

    Article  Google Scholar 

  200. Siegler JC, Gleadall-Siddall DO. Sodium bicarbonate ingestion and repeated swim sprint performance. J Strength Cond Res. 2010;24(11):3105–11.

    PubMed  Google Scholar 

  201. Siegler JC, Hirscher K. Sodium bicarbonate ingestion and boxing performance. J Strength Cond Res. 2010;24(1):103–8.

    PubMed  Google Scholar 

  202. Siegler JC, Keatley S, Midgley AW, Nevill AM, McNaughton LR. Pre-exercise alkalosis and acid-base recovery. Int J Sports Med. 2008;29(7):545–51.

    CAS  PubMed  Google Scholar 

  203. Siegler JC, Marshall P, Pouslen MK, Nielsen NPB, Kennedy D, Green S. The effect of pH on fatigue during submaximal isometric contractions of the human calf muscle. Eur J Appl Physiol. 2015;115(3):565–77.

    PubMed  Google Scholar 

  204. Siegler JC, Marshall PWM, Finn H, Cross R, Mudie K. Acute attenuation of fatigue after sodium bicarbonate supplementation does not manifest into greater training adaptations after 10-weeks of resistance training exercise. PLoS ONE. 2018;13(5): e0196677-e.

    Google Scholar 

  205. Siegler JC, Marshall PWMM, Raftry S, Brooks C, Dowswell B, Romero R, et al. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling. J Appl Physiol (1985). 2013;115(11):1634–40.

    CAS  Google Scholar 

  206. Siegler JC, McNaughton LR, Midgley AW, Keatley S, Hillman A. Metabolic alkalosis, recovery and sprint performance. Int J Sports Med. 2010;31(11):797–802.

    CAS  PubMed  Google Scholar 

  207. Siegler JC, Mudie K, Marshall P. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise. Exp Physiol. 2016;101(11):1383–91.

    CAS  PubMed  Google Scholar 

  208. Siegler JC, Vargas N, Green S. Sodium bicarbonate supplementation minimally affects the accumulated oxygen deficit during intense cycling to exhaustion. Transl Sports Med. 2018;1(2):95–100.

    Google Scholar 

  209. Someren KV, Fulcher K, McCarthy J, Moore J, Horgan G, Langford R. An investigation into the effects of sodium citrate ingestion on high-intensity exercise performance. Int J Sport Nutr. 1998;8(4):356–63.

    PubMed  Google Scholar 

  210. Sostaric SM, Skinner SL, Brown MJ, Sangkabutra T, Medved I, Medley T, et al. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J Physiol. 2006;570(1):185–205.

    CAS  PubMed  Google Scholar 

  211. Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc. 2002;34(4):614–21.

    CAS  PubMed  Google Scholar 

  212. Stöggl T, Torres-peralta R, Cetin E, Nagasaki M, Stoggl T, Torres-peralta R, et al. Repeated high intensity bouts with long recovery: are bicarbonate or carbohydrate supplements an option? Sci World J. 2014;2014: 145747.

    Google Scholar 

  213. Street D, Nielsen JJ, Bangsbo J, Juel C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol. 2005;566(2):481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci. 1981;61(3):331–8.

    CAS  Google Scholar 

  215. Suvi S, Mooses M, Timpmann S, Medijainen L, Narõškina D, Unt E, et al. Impact of sodium citrate ingestion during recovery after dehydrating exercise on rehydration and subsequent 40-km cycling time-trial performance in the heat. Appl Physiol Nutr Metab. 2018;43(6):571–9.

    CAS  PubMed  Google Scholar 

  216. Tan F, Polglaze T, Cox G, Dawson B, Mujika I, Clark S. Effects of induced alkalosis on simulated match performance in elite female water polo players. Int J Sport Nutr Exerc Metab. 2010;20(3):198–205.

    CAS  PubMed  Google Scholar 

  217. Thomas C, Delfour-Peyrethon R, Bishop DJ, Perrey S, Lepretre PM, Dorel S, et al. Effects of pre-exercise alkalosis on the decrease in VO2 at the end of all-out exercise. Eur J Appl Physiol. 2016;116(1):85–95.

    CAS  PubMed  Google Scholar 

  218. Timpmann S, Burk A, Medijainen L, Tamm M, Kreegipuu K, Vahi M, et al. Dietary sodium citrate supplementation enhances rehydration and recovery from rapid body mass loss in trained wrestlers. Appl Physiol Nutr Metab. 2012;37(6):1028–37.

    CAS  PubMed  Google Scholar 

  219. Tiryaki GR, Atterbom HA. The effects of sodium bicarbonate and sodium citrate on 600 m running time of trained females. J Sport Med Phys Fit. 1995;35(3):194–8.

    CAS  Google Scholar 

  220. Tobias G, Benatti FB, Painelli VS, Roschel H, Gualano B, Sale C, et al. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45(2):309–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Vaher I, Timpmann S, Aedma M, Oopik V, Ööpik V. Impact of acute sodium citrate ingestion on endurance running performance in a warm environment. Eur J Appl Physiol. 2015;115(4):813–23.

    CAS  PubMed  Google Scholar 

  222. Van Montfoort MCEE, Van Dieren L, Hopkins WG, Shearman JP. Effects of ingestion of bicarbonate, citrate lactate, and chloride on sprint running. Med Sci Sport Exerc. 2004;36(7):1239–43.

    Google Scholar 

  223. Vanhatalo A, McNaughton LR, Siegler J, Jones AM. Effect of induced alkalosis on the power-duration relationship of “all-out” exercise. Med Sci Sports Exerc. 2010;42(3):563–70.

    CAS  PubMed  Google Scholar 

  224. Voskamp AE, Van Den Bos S, Foster C, De Koning JJ, Noordhof DA. The effect of sodium bicarbonate supplementation on the decline in gross efficiency during a 2000-m cycling time trial. Int J Sport Physiol Perf. 2020;15(5):741–7.

    Google Scholar 

  225. Webster MJ, Webster MN, Crawford RE, Gladden LB. Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sports Exerc. 1993;25(8):960–5.

    CAS  PubMed  Google Scholar 

  226. Wilkes D, Gledhill N, Smyth R. Effect of acute induced metabolic alkalosis on 800-m racing time. Med Sci Sports Exerc. 1983;15(4):277–80.

    CAS  PubMed  Google Scholar 

  227. Yunoki T, Matsuura R, Arimitsu T, Kimura T, Yano T. Effects of sodium bicarbonate ingestion on hyperventilation and recovery of blood ph after a short-term intense exercise. Physiol Res. 2009;58(4):537–43.

    CAS  PubMed  Google Scholar 

  228. Zabala M, Peinado AB, Calderon FJ, Sampedro J, Castillo MJ, Benito PJ. Bicarbonate ingestion has no ergogenic effect on consecutive all out sprint tests in BMX elite cyclists. Eur J Appl Physiol. 2011;111(12):3127–34.

    CAS  PubMed  Google Scholar 

  229. Zabala M, Requena B, Sanchez-Munoz C, Gonzalez-Badillo JJ, Garcia I, Oopik V, et al. Effects of sodium bicarbonate ingestion on performance and perceptual responses in a laboratory-simulated BMX cycling qualification series. J strength Cond Res. 2008;22(5):1645–53.

    PubMed  Google Scholar 

  230. Zajac A, Cholewa J, Poprzecki SS, Waskiewicz Z, Langfort J, Waśkiewicz Z, et al. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J Sports Sci Med. 2009;8(1):45–50.

    PubMed  PubMed Central  Google Scholar 

  231. Zinner C, Wahl P, Achtzehn S, Sperlich B, Mester J. Effects of bicarbonate ingestion and high intensity exercise on lactate and H+-ion distribution in different blood compartments. Eur J Appl Physiol. 2011;111(8):1641–8.

    CAS  PubMed  Google Scholar 

  232. Mohd MFA, Alsababha W, Haddad Y, Obeidat G, Telfah Y. Effect of acute sodium bicarbonate intake on sprint-intermittent performance and blood biochemical responses in well-trained sprinters. Monten J Sports Sci Med. 2021;10(1):5–10.

    Google Scholar 

  233. dos Santos GR, de Morais Junior AC, Schincaglia RM, Pimentel GD, Mota JF, Saunders B. Sodium bicarbonate supplementation does not improve running anaerobic sprint test performance in semiprofessional adolescent soccer players. Int J Sport Nutr Exerc Metab. 2020;30(5):330–7.

    Google Scholar 

  234. Durkalec-Michalski K, Nowaczyk PM, Adrian J, Kamińska J, Podgórski T. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: a randomized, double-blind, placebo-controlled crossover study. Nutr Metab. 2020;17(1):1–15.

    Google Scholar 

  235. Gurton W, Macrae HZ, Gough LA, King DG. Effects of post-exercise sodium bicarbonate ingestion on acid-base balance recovery and time-to-exhaustion running performance: a randomised crossover trial in recreational athletes. Appl Physiol Nutr Metab. 2021;46:1111–8.

    CAS  PubMed  Google Scholar 

  236. Gurton WH, Faulkner SH, James RM. Effect of warm-up and sodium bicarbonate ingestion on 4-km cycling time-trial performance. Int J Sport Physiol Perform. 2020;43(1):1–7.

    Google Scholar 

  237. Gurton WH, Gough LA, Sparks SA, Faghy MA, Reed KE. Sodium bicarbonate ingestion improves time-to-exhaustion cycling performance and alters estimated energy system contribution: a dose-response investigation. Front Nutr. 2020;7:154.

    PubMed  PubMed Central  Google Scholar 

  238. Hilton NP, Leach NK, Hilton MM, Sparks SA, McNaughton LR. Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists. Eur J Appl Physiol. 2020;120(7):1563–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Poffé C, Wyns F, Ramaekers M, Hespel P. Exogenous ketosis impairs 30-min time-trial performance independent of bicarbonate supplementation. Med Sci Sport Exerc. 2021;53(5):1068–78.

    Google Scholar 

  240. Ragone L, Guilherme Vieira J, Camaroti Laterza M, Leitão L, Da Silva NJ, Macedo Vianna J, et al. Acute effect of sodium bicarbonate supplementation on symptoms of gastrointestinal discomfort, acid-base balance, and performance of Jiu-Jitsu Athletes. J Hum Kinet. 2020;75(1):85–93.

    PubMed  PubMed Central  Google Scholar 

  241. Sarshin A, Fallahi V, Forbes SC, Rahimi A, Koozehchian MS, Candow DG, et al. Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J Int Soc Sports Nutr. 2021;18(1):1–10.

    Google Scholar 

  242. Thomas C, Delfour-Peyrethon R, Dorel S, Hanon C. Positive effects of pre-exercise metabolic alkalosis on perceived exertion and post-exercise squat jump performance in world-class cyclists. J Strength Cond Res. 2021. https://doi.org/10.1519/JSC.0000000000003855.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Saunders.

Ethics declarations

Funding

No specific funding was received for this review. Bryan Saunders (2016/50438-0), Eimear Dolan (2019/05616 and 2019/26899-6) and Guilherme Artioli (2019/25032-9) have been financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Bryan Saunders has received a grant from Faculdade de Medicina da Universidade de São Paulo (2020.1.362.5.2). Krzysztof Durkalec-Michalski has received a grant from the Polish National Science Centre (Grant number 2018/02/X/NZ7/03217).

Competing Interests

Several of the authors (LFO, GGA, BS) have previously received sodium bicarbonate, sodium citrate and calcium lactate supplements at no cost from a national supplement company (Farmácia Analítica, Rio de Janeiro, Brazil) for work unrelated to the current article. Farmácia Analítica have not had any input (financial, intellectual or otherwise) into this review. The remaining authors report no conflicts of interest.

Ethics Approval, Consent to Participate and Consent for Publication

Not applicable.

Data Availability Statements

Extracted data and analysis codes are available upon reasonable request.

Authors Contributions

LFO, ED and BS are responsible for the conception of the work. LFO and ED performed the literature search, article selection and data extraction. PS performed all data analysis. LFO and BS drafted the first version of the manuscript, ED, KD-M, GGA and LRM critically revised the work and content. All authors read and approved the final version.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, L.F., Dolan, E., Swinton, P.A. et al. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis. Sports Med 52, 505–526 (2022). https://doi.org/10.1007/s40279-021-01575-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01575-x

Navigation