Skip to main content
Log in

Rank-based test for slope homogeneity in high-dimensional panel data models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

A large number of existing high-dimensional panel data analyses are established based on normal or nearly normal distribution assumptions, which may be not robust to severe departures of normality. Since the observed data may not follow the normal distribution in some specific applications, it is necessary to design robust tests to departures of normality. On this ground, we propose a rank-based score test for testing slope homogeneity in high-dimensional panel data regressions, where robust tests to departures of normality are still rare. Both theoretical and numerical results demonstrate the advantage of the proposed test in robustness to departures of normality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Breitung J, Roling C, Salish N (2016) Lm-type tests for slope homogeneity in panel data models. Econom J 19(2):166–202

    Article  MathSciNet  Google Scholar 

  • Feng L, Zou C, Wang Z, Chen B (2013) Rank-based score tests for high-dimensional regression coefficients. Electron J Stats 7:2131–2149

    MathSciNet  MATH  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its application. Academic Press, New York

    MATH  Google Scholar 

  • Hettmansperger TP, McKean J (1998) Robust nonparametric statistical methods. Arnold/Wiley, London/New York

    MATH  Google Scholar 

  • Juhl T, Lugovskyy O (2014) A test for slope heterogeneity in fixed effects models. Econom Rev 33(8):906–935

    Article  MathSciNet  Google Scholar 

  • Koul HL, Sievers GL, McKean J (1987) An estimator of the scale parameter for the rank analysis of linear models under general score functions. Scand J Stat 14(2):131–141

    MathSciNet  MATH  Google Scholar 

  • Papadopoulos S (2013) Confirmatory factor analyses on non-normal panel data: an application to banking. Int J Comput Econ Econom 3:124

    Google Scholar 

  • Papadopoulos S, Amemiya Y (2005) Correlated samples with fixed and nonnormal latent variables. Ann Stat 33(6):2732–2757

    Article  MathSciNet  Google Scholar 

  • Pesaran MH, Smith R, Im KS (1996) Dynamic linear models for heterogeneous panels. In: InMatyas L, Sevestre P (eds) The econometrics of panel data. Springer, Berlin

    Google Scholar 

  • Pesaran MH, Yamagata T (2008) Testing slope homogeneity in large panels. J Econom 142(1):50–93

    Article  MathSciNet  Google Scholar 

  • Phillips PCB, Sul D (2003) Dynamic panel estimation and homogeneity testing under cross section dependence. Econom J 6(1):217–259

    Article  MathSciNet  Google Scholar 

  • Rashid MM, Mckean JW, Kloke J (2012) R estimates and associated inferences for mixed models with covariates in a multicenter clinical trial. Stat Biopharmaceut Res 4(1):37–49

    Article  Google Scholar 

  • Swamy PAVB (1970) Efficient inference in a random coefficient regression model. Econometrica 38:311–323

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank partial support from NSFC Grants 11501092, 11571068, 11671073, the Fundamental Research Funds for the Central Universities Grant 2412017BJ002, the Key Laboratory of Applied Statistics of MOE (KLAS) Grants 130026507 and 130028612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

First, we consider the asymptotic property of \({\hat{\varvec{\beta }}}_{RWFE}\). According to Hettmansperger and McKean (1998) or Rashid et al. (2012), we have

$$\begin{aligned} {\hat{\varvec{\beta }}}_{RWFE}=&\,\varvec{\beta }_0+\left( \sum _{i=1}^N \tau _i^{-2}{\varvec{\Sigma }}_i\right) ^{-1}\sum _{i=1}^N\tau _i^{-2}{\varvec{\Sigma }}_i\delta _i\nonumber \\&+\left( \sum _{i=1}^N \tau _i^{-2}{\varvec{\Sigma }}_i\right) ^{-1}\sum _{i=1}^N \mathbf{M}\mathbf{X}_i \psi (F_i({\varvec{u}}_i))/\tau _i+o_p(T^{-1/2}N^{-1/2}). \end{aligned}$$
(9)

Define \(\xi _{it}=\sqrt{12}\left( \frac{R(u_{it})}{T+1}-\frac{1}{2}\right) \) and recall that \(e_{it}=\sqrt{12}\left( \frac{R({\hat{\varepsilon }}_{it})}{T+1}-\frac{1}{2}\right) \). We can decompose \({\hat{Q}}_{RS}\) in (7) as follows:

$$\begin{aligned} {\hat{Q}}_{RS}=&\,\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum } {{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} e_{it}e_{is}}\\ ={}&\,\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \xi _{is}\xi _{it}+\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} (e_{it}-\xi _{it})(e_{is}-\xi _{is}), \\&+2\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} (e_{it}-\xi _{it})\xi _{is}\\ \equiv {}&\,A_{1}+A_{2}+A_{3}. \end{aligned}$$

First, we consider the first part \(A_{1}\). Let \(\eta _{it}= \sqrt{12}(F_i( u_{it})-\frac{1}{2})\). Below, we will prove that

$$\begin{aligned} A_{1}=\frac{T(T-1)}{(T+1)^2}\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \eta _{is}\eta _{it}+\frac{kTN}{(T+1)^2}+o_p(N^{1/2}). \end{aligned}$$
(10)

Obviously,

$$\begin{aligned}&\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \xi _{is}\xi _{it}\\&\quad =\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \frac{12}{(T+1)^2}\sum _{k=1}^T\sum _{l=1}^T \left( I( u_{ik}\le u_{is})-\frac{1}{2}\right) \left( I( u_{il}\le u_{it})-\frac{1}{2}\right) \\&\quad =\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \frac{12}{(T+1)^2}\sum _{k=1}^T \left( I( u_{ik}\le u_{is})-\frac{1}{2}\right) \left( I( u_{ik}\le u_{it})-\frac{1}{2}\right) \\&\qquad +\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \frac{12}{(T+1)^2}\underset{k\not =l}{\sum \sum } \left( I( u_{ik}\le u_{is})-\frac{1}{2}\right) \left( I( u_{il}\le u_{it})-\frac{1}{2}\right) \\&\quad \equiv D_{1}+D_{2}, \end{aligned}$$

where

$$\begin{aligned} {\mathbb {E}}(D_{1})&=\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\mathbb {E}}({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} )\frac{12}{(T+1)^2}\sum _{k=1}^T {\mathbb {E}}\{(\frac{1}{2}-F_i( u_{ik}))^2\}=\frac{pTN}{(T+1)^2}, \\ \mathrm {var}(D_{1})&=O(T^{-1}{\mathbb {E}}(D_{1}^2))=O(N^2/T^3)=o(N), \end{aligned}$$

due to \(N=o(T^3)\), and

$$\begin{aligned} D_{2}&=\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \frac{12}{(T+1)^2}\underset{k\not =l}{\sum \sum } \left( I( u_{ik}\le u_{is})-\frac{1}{2}\right) \left( I( u_{il}\le u_{it})-\frac{1}{2}\right) \\&= \frac{T(T-1)}{(T+1)^2}\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it}\eta _{is}\eta _{it}\\&\quad +\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \frac{12}{(T+1)^2}\underset{k\not =l}{\sum \sum } \left( I( u_{ik}\le u_{is})-F_i( u_{is})\right) \left( I( u_{il}\le u_{it})-\frac{1}{2}\right) \\&\quad +\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \frac{12}{(T+1)^2}\underset{k\not =l}{\sum \sum } \left( I( u_{ik}\le u_{is})-F_i( u_{is})\right) \eta _{it}\\&\equiv \frac{T(T-1)}{(T+1)^2}\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it}\eta _{is}\eta _{it}+D_{21}+D_{22}. \end{aligned}$$

Then, we have that \({\mathbb {E}}(D^2_{21})=O(T^{-1}N)\) and \({\mathbb {E}}(D^2_{22})=O(T^{-1}N)\), based on which we complete the proof of (10).

Next, we consider the second part \(A_{2}\). We have that

$$\begin{aligned}&{\mathbb {E}}(A_{2}|\mathbf{X}_1,\ldots ,\mathbf{X}_N)\\&\quad =\frac{12}{(T+1)^2}\sum _{i=1}^N {\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T\sum _{k=1}^T(I( u_{il}\le u_{is}+(\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))\\&\qquad -I( u_{il}\le u_{is}))\times I( u_{ik}\le u_{it}+(\mathbf{X}_{it}-\mathbf{X}_{it})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))-I( u_{ik}\le u_{it}))\bigg \}\\&\quad =\frac{12}{(T+1)^2}\sum _{i=1}^N{\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {{\mathbb {E}}\bigg [}{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T \sum _{k=1}^T(I( u_{il}\le u_{is}+(\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))\\&\qquad -I( u_{il}\le u_{is}))\times I( u_{ik}\le u_{it}+(\mathbf{X}_{it}-\mathbf{X}_{it})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))-I( u_{ik}\le u_{it}))\big |{u_{is}, u_{it}\bigg ]}\bigg \}\\&\quad =\frac{12}{(T+1)^2}\sum _{i=1}^N{\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T\sum _{k=1}^T(F_i( u_{is}+(\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))-F_i( u_{is}))\\&\qquad \times (F_i( u_{it}+(\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))-F( u_{it}))\bigg \}\\&\quad =\frac{12}{(T+1)^2}\sum _{i=1}^N{\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T\sum _{k=1}^T\bigg (\int f_i^2(x)dx ((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))\\&\qquad +\int f_i^{'}(\xi _{isl})f_i(x)dx((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))^2\bigg )\\&\qquad \times \left( \int f_i^2(x)dx ((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))\right. \\&\qquad \left. +\int f_i^{'}(\xi _{itk})f_i(x)dx((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))^2\right) \bigg \}\\&\quad =\frac{12}{(T+1)^2}\sum _{i=1}^N{\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T\sum _{k=1}^T\left( \int f_i^2(x)dx\right) ^2\\&\qquad \times (\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE})(\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE})\bigg \}\\&\qquad +\frac{24}{(T+1)^2}\sum _{i=1}^N{\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T\sum _{k=1}^T\int f_i^2(x)dx\int f_i^{'}(\xi _{itk})f_i(x)dx \\&\qquad \times (\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE})((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))^2\bigg \}\\&\qquad +\frac{12}{(T+1)^2}\sum _{i=1}^N{\mathbb {E}}_{\mathbf{X}}\bigg \{\underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \sum _{l=1}^T\sum _{k=1}^T\left( ((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))^2\right. \\&\qquad \left. \times ((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE}))^2\right) \\&\qquad \times \left( \int f_i^{'}(\xi _{isl})f_i(x)dx\int f_i^{'}(\xi _{itk})f_i(x)dx\right) \bigg \}\\&\quad \equiv A_{21}+A_{22}+A_{23}, \end{aligned}$$

where \({\mathbb {E}}_{\mathbf{X}}\) denotes the conditional expectation given \(\mathbf{X}_1,\ldots ,\mathbf{X}_N\), i.e. \({\mathbb {E}}(\cdot |\mathbf{X}_1,\ldots ,\mathbf{X}_N)\), and \(\xi _{itk}\) is a variable between \( u_{it}\) and \( u_{it}+(\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RFE})\). By (9), we have

$$\begin{aligned} {\mathbb {E}}(A_{21})=&{T}\left\{ \sum _{i=1}^N \tau _i^{-2}\delta _i^\top {\varvec{\Sigma }}_i \delta _i-\sum _{i=1}^N\tau _i^{-2}\delta _i^\top {\varvec{\Sigma }}_i\left( \sum _{i=1}^N \tau _i^{-2}{\varvec{\Sigma }}_i\right) ^{-1}\sum _{i=1}^N\tau _i^{-2}{\varvec{\Sigma }}_i\delta _i\right\} \\&+o(N^{1/2}). \end{aligned}$$

Define \(\gamma _i=\left( \delta _i-\left( \sum _{i=1}^N \tau _i^{-2}{\varvec{\Sigma }}_i\right) ^{-1}\sum _{i=1}^N\tau _i^{-2}{\varvec{\Sigma }}_i\delta _i\right) /\tau _i\). We have that

$$\begin{aligned} {\mathbb {E}}(A_{22})&\le c_1\sum _{i=1}^N {\mathbb {E}}\left( T^2{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it}(\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE}))^2\right) \\&\le c_2T\sum _{i=1}^N\sqrt{{\mathbb {E}}\left( (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})^\top {\varvec{\Sigma }}_i(\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})\right) {\mathbb {E}}\left( (\mathbf{X}_{it}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE}))^4\right) }\\&\le c_3\sum _{i=1}^NT(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^{3/2}=o(N^{1/2}), \end{aligned}$$

and

$$\begin{aligned} {\mathbb {E}}(A_{23})&\le c_4 T^2\sum _{i=1}^N {\mathbb {E}}\left( {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it}((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE}))^2\right. \\&\quad \left. \times ((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE}))^2)\right) \\&\le c_5\sum _{i=1}^NT^2\sqrt{{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2\right) {\mathbb {E}}\left( (\mathbf{X}_{is}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE}))^4(\mathbf{X}_{it}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE}))^4\right) }\\&\le c_6T\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2=o(N^{1/2}), \end{aligned}$$

where \(c_i\), \(i=1, \ldots , 6\), are all positive constants that are independent of the samples. Thus, \({\mathbb {E}}(A_{2})=\psi _{RS}+o(N^{1/2})\) under the alternative.

Then, we consider the variance of \(A_{2}\). We have that

$$\begin{aligned}&\mathrm {var}(A_{2})\\&\quad =\mathrm {var}\Biggl (\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum } {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} (e_{it}-\xi _{it})(e_{is}-\xi _{is})\Biggr )\\&\quad =O(T^{2})\sum _{i=1}^N{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} )^2 (e_{it}-\xi _{it})^2(e_{is}-\xi _{is})^2\right) \\&\qquad +O(T^{3})\sum _{i=1}^N {\mathbb {E}}\left( {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{ik} (e_{is}-\xi _{is})^2(e_{it}-\xi _{it})(e_{ik}-\xi _{ik})\right) \\&\qquad +O(T^{-1}){\mathbb {E}}^2(A_{2})\\&\quad \equiv B_{1}+B_{2}+o(N). \end{aligned}$$

Similar to the arguments in the calculation of \({\mathbb {E}}(A_{2})\), we have that

$$\begin{aligned} B_{1}=&\,O(T^{2})\sum _{i=1}^N\Big \{{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right. \\&\left. \times ((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\&+{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^4\right) \\&+{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^4((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^4\right) \Big \}\\ \equiv {}&\, O(T^{2})(B_{11}+B_{12}+B_{13}). \end{aligned}$$

Here,

$$\begin{aligned} B_{11}=&\,\sum _{i=1}^N{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2((\mathbf{X}_{is}-\mathbf{X}_{il})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2((\mathbf{X}_{it}-\mathbf{X}_{ik})^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\ =&\,\sum _{i=1}^N{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2({\mathbf{X}}_{is}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2(\mathbf{X}_{it}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\&+2\sum _{i=1}^N{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2(\mathbf{X}_l^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2(\mathbf{X}_{it}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\&+\sum _{i=1}^N{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2(\mathbf{X}_{il}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2(\mathbf{X}_{ik}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) , \end{aligned}$$

where

$$\begin{aligned}&\sum _{i=1}^N{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2({\mathbf{X}}_{is}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2(\mathbf{X}_{it}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\&\quad =\,\sum _{i=1}^N{\mathbb {E}}(({\mathbf{X}}_{is}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2 E((\mathbf{X}_{it}^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2|{\mathbf{X}}_{is}))\\&\quad =\,O(T^{-2}\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2),\\&{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2(\mathbf{X}_l^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2(\mathbf{X}_j^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\&\quad =O(T^{-2}\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2),\\&{\mathbb {E}}\left( ({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it})^2(\mathbf{X}_l^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2(\mathbf{X}_k^\top (\varvec{\beta }_i-{\hat{\varvec{\beta }}}_{RWFE})))^2\right) \\&\quad =O(T^{-2}\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2). \end{aligned}$$

Hence, \(T^2B_{11}=O\left( \sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2\right) =o(N)\) under the local alternative (8). Taking the same procedure as \(B_{11}\), we can show that

$$\begin{aligned}&B_{12}=O\left( T^{-2}\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^3\right) ,~~B_{13}=O\left( T^{-2}\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^4\right) ,\\&B_{2}=O\left( T\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2\right) . \end{aligned}$$

Thus, under the local alternative (8), \(\mathrm {var}(A_{2})=o(N)\), which indicates that \(A_{2}=\psi _{RS}+o_p(N^{1/2})\).

Similarly, we have that \({\mathbb {E}}(A_{3})=0\) and

$$\begin{aligned} \mathrm {var}(A_{3})=O(T\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i))+O(T\sum _{i=1}^N(\gamma _i^\top {\varvec{\Sigma }}_i\gamma _i)^2)=o(N), \end{aligned}$$

under the local alternative (8). Thus, we have \(A_{3}=o_p(N^{1/2})\).

Finally, we will prove that

$$\begin{aligned} \frac{1}{\sqrt{2pN}}\sum _{i=1}^N \underset{1\le s<t\le T}{\sum \sum }{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it} \eta _{is}\eta _{it} \mathop {\rightarrow }\limits ^{d}N(0, 1). \end{aligned}$$

Define \({\tilde{W}}_{Tt}=\sum _{s=2}^t Z_{Ts}\), where \(Z_{Tt}=\sum _{s=1}^{t-1}\sum _{i=1}^N\eta _{is}\eta _{it}{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it}\). Let \({\mathcal {F}}_t=\sigma \{\varvec{\varepsilon }_{1.}, \ldots , \varvec{\varepsilon }_{t.}\}\) be the \(\sigma \)-field generated by \(\{\varvec{\varepsilon }_{s.}, s\le t\}\) and \(\varvec{\varepsilon }_{s.}\equiv (u_{1s},\ldots ,u_{Ns})^\top \) for each \(s\le t\le T\).

It is easy to show that \({\mathbb {E}}(Z_{Tt}|{\mathcal {F}}_{t-1})=0\) and it follows that \(\{{\tilde{W}}_{Ts}, {\mathcal {F}}_s; 2\le s\le T\}\) is a zero mean martingale. Let \(v_{Tt}={\mathbb {E}}(Z_{Tt}^2|{\mathcal {F}}_{t-1})\), \(2\le t\le T\), and \(V_T=\sum _{t=2}^T v_{Tt}\). The central limit theorem (Hall and Heyde 1980) will hold if we can show

$$\begin{aligned} \frac{V_T}{\mathrm {var}({\tilde{W}}_{TT})}\mathop {\rightarrow }\limits ^{p}1 \end{aligned}$$
(11)

and

$$\begin{aligned} \sum _{i=2}^T{\mathbb {E}}(Z_{Tt}^4)=o(N^2). \end{aligned}$$
(12)

In fact, it can be shown that

$$\begin{aligned} v_{Tt}=\sum _{i=1}^N\left( \sum _{s=1}^{t-1}\eta _{is}^2{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{is}+2\sum _{1\le s<k < t}\eta _{is}\eta _{ik} {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{ik}\right) , \end{aligned}$$

which results in

$$\begin{aligned} \frac{V_n}{\mathrm {var}({\tilde{W}}_{nn})}={}&\frac{2}{T(T-1)pN}\sum _{i=1}^N\left\{ \sum _{s=1}^{T-1}s\eta _{is}^2{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{is}+2\sum _{1\le s<k\le T}\eta _{is}\eta _{ik}{\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{ik}\right\} \\ \equiv&C_{1}+C_{2}. \end{aligned}$$

Simple algebras lead to \({\mathbb {E}}(C_{1})=1\) and

$$\begin{aligned} \mathrm {var}(C_{1})=\frac{4}{T^2(T-1)^2p^2N^2}\sum _{i=1}^N {\mathbb {E}}\left( \sum _{s=1}^{T-1}s^2 (\eta _{is}^4({\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{is})^2-p)\right) =O(T^{-1}N^{-1}). \end{aligned}$$

Hence, \(\mathrm {var}(C_{1})\rightarrow 0\) and then \(C_{1}\mathop {\rightarrow }\limits ^{p}1\). Similarly, \({\mathbb {E}}(C_{2})=0\) and

$$\begin{aligned} \mathrm {var}(C_{2})&=\frac{8}{T^2(T-1)^2p^2N^2}\sum _{i=1}^N\left( \sum _{s=3}^T \frac{s(s-1)}{2}+\sum _{s=3}^{T-1}\frac{s(T-s)(s-1)}{2}\right) \\&=O(N^{-1}) \rightarrow 0, \end{aligned}$$

which implies that \(C_{2} \mathop {\rightarrow }\limits ^{p}0\). Thus, (11) holds. On the other hand,

$$\begin{aligned} \sum _{t=2}^T {\mathbb {E}}(Z_{Tt}^4)=\sum _{t=2}^T {\mathbb {E}}\left( \left( \sum _{i=1}^N\sum _{s=1}^{t-1}\eta _{is}\eta _{it} {\tilde{\mathbf{X}}}_{is}^\top {\tilde{\mathbf{X}}}_{it}\right) ^4\right) , \end{aligned}$$

which can be decomposed as \(3Q+P\) with

$$\begin{aligned} Q&=O(1)\sum _{i=1}^N\sum _{t=2}^T \sum _{k\not =l}^{t-1}E\left( {\tilde{\mathbf{X}}}_{it}^\top {\tilde{\mathbf{X}}}_{ik}{\tilde{\mathbf{X}}}_{ik}^\top {\tilde{\mathbf{X}}}_{it}{\tilde{\mathbf{X}}}_{it}^\top {\tilde{\mathbf{X}}}_{il}{\tilde{\mathbf{X}}}_{il}^\top {\tilde{\mathbf{X}}}_{it}\right) =O(T^{-1}N), \\ P&=O(1)\sum _{i=1}^N\sum _{t=2}^T \sum _{s=1}^{t-1}E\left( ({\tilde{\mathbf{X}}}_{it}^\top {\tilde{\mathbf{X}}}_{is})^4\right) =O(T^{-2}N). \end{aligned}$$

Thus, we have \(Q=o(N^2)\) and \(P=o(N^2)\). Hence (12) holds. These complete the proof of Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Liu, B., Zhao, P. et al. Rank-based test for slope homogeneity in high-dimensional panel data models. Metrika 85, 605–626 (2022). https://doi.org/10.1007/s00184-021-00845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00845-y

Keywords

Navigation