Skip to main content
Log in

Neue Entwicklungen bei kabellosen Schrittmachersystemen

New developments in leadless pacing systems

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die kabellosen Schrittmachersysteme, insbesondere das Micra™ TPS-System, bieten eine sichere und effektive Alternative zu der bisherigen konventionellen transvenösen Therapie in Patienten mit unmöglichem oder erschwertem Zugangsweg und scheinen auch in Kombination mit anderen implantierbaren Geräten (S-ICD, Neurostimulatoren) keine Einschränkung von Effektivität oder Sicherheit zu zeigen. Auch neue Entwicklungen im Hinblick auf eine kabellose Resynchronisationstherapie sind durchaus vielversprechend und könnten zukünftig den Patienten evtl. kabel- oder operationsbedingte Komplikationen ersparen. Limitierend für die vollständige Implementierung dieser neuen Technologien im klinischen Alltag sind fehlende Daten und Studien, aber auch die Verfügbarkeit und die Kosten. Dennoch ist basierend auf der aktuell begrenzten, aber vielversprechenden Datenlage mit weiteren positiven Langzeitbeobachtungen und steigenden Implantationszahlen zu rechnen.

Abstract

Leadless pacing systems, especially the Micra™ TPS system, deliver an effective and safe alternative to the previous conventional transvenous systems in patients with impossible transvenous access and seem to be compatible with other implantable devices (S-ICD, deep brain stimulators) with no limitations in efficacy or safety. Also, new outlooks on leadless resynchronization therapy seem promising and could prevent future patients from lead- or operation-associated complications. Current limits to the implementation in everyday clinical practice are mostly the unavailability of the devices or cost issues through lack of health insurance reimbursement. However, more promising data through further studies and rising implantation rates are expected based on the positive current clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Raatikainen MJP, Arnar DO, Merkely B et al (2017) A decade of information on the use of cardiac implantable electronic devices and interventional electrophysiological procedures in the European Society of Cardiology Countries: 2017 report from the European Heart Rhythm Association. Europace 19(suppl_2):ii1–ii90. https://doi.org/10.1093/europace/eux258

    Article  PubMed  Google Scholar 

  2. Larsson B, Elmqvist H, Ryden L et al (2003) Lessons from the first patient with an implanted pacemaker: 1958–2001. Pacing Clin Electrophysiol 26(1 Pt 1):114–124. https://doi.org/10.1046/j.1460-9592.2003.00162.x

    Article  PubMed  Google Scholar 

  3. Markewitz A, Bundesfachgruppe Herzschrittmacher und Defibrillatoren (2021) Annual report 2019 of the German pacemaker and defibrillator registry-part 1: cardiac pacemakers: Working group on cardiac pacemakers and cardioverter-defibrillators at IQTIG-Institute for Quality Assurance and Transparency in Healthcare. Herzschrittmacherther Elektrophysiol. https://doi.org/10.1007/s00399-021-00796-x

    Article  PubMed  Google Scholar 

  4. Udo EO, Zuithoff NP, van Hemel NM et al (2012) Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm 9(5):728–735. https://doi.org/10.1016/j.hrthm.2011.12.014

    Article  PubMed  Google Scholar 

  5. Kirkfeldt RE, Johansen JB, Nohr EA et al (2014) Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J 35(18):1186–1194. https://doi.org/10.1093/eurheartj/eht511

    Article  PubMed  Google Scholar 

  6. Reynolds D, Duray GZ, Omar R et al (2016) A leadless intracardiac transcatheter pacing system. N Engl J Med 374(6):533–541. https://doi.org/10.1056/NEJMoa1511643

    Article  PubMed  CAS  Google Scholar 

  7. Sieniewicz BJ, Betts TR, James S et al (2020) Real-world experience of leadless left ventricular endocardial cardiac resynchronization therapy: a multicenter international registry of the WiSE-CRT pacing system. Heart Rhythm 17(8):1291–1297. https://doi.org/10.1016/j.hrthm.2020.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ng JB, Chua K, Teo WS (2019) Simultaneous leadless pacemaker and subcutaneous implantable cardioverter-defibrillator implantation – when vascular options have run out. J Arrhythm 35(1):136–138. https://doi.org/10.1002/joa3.12140

    Article  PubMed  Google Scholar 

  9. Mondesert B, Dubuc M, Khairy P et al (2015) Combination of a leadless pacemaker and subcutaneous defibrillator: first in-human report. HeartRhythm Case Rep 1(6):469–471. https://doi.org/10.1016/j.hrcr.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spickler JW, Rasor NS, Kezdi P et al (1970) Totally self-contained intracardiac pacemaker. J Electrocardiol 3(3/4):325–331. https://doi.org/10.1016/s0022-0736(70)80059-0

    Article  PubMed  CAS  Google Scholar 

  11. Reddy VY, Knops RE, Sperzel J et al (2014) Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129(14):1466–1471. https://doi.org/10.1161/CIRCULATIONAHA.113.006987

    Article  PubMed  Google Scholar 

  12. Reddy VY, Exner DV, Cantillon DJ et al (2015) Percutaneous implantation of an entirely intracardiac leadless pacemaker. N Engl J Med 373(12):1125–1135. https://doi.org/10.1056/NEJMoa1507192

    Article  PubMed  CAS  Google Scholar 

  13. Lakkireddy D, Knops R, Atwater B et al (2017) A worldwide experience of the management of battery failures and chronic device retrieval of the Nanostim leadless pacemaker. Heart Rhythm 14(12):1756–1763. https://doi.org/10.1016/j.hrthm.2017.07.004

    Article  PubMed  Google Scholar 

  14. Steinwender C, Khelae SK, Garweg C et al (2020) Atrioventricular synchronous pacing using a leadless ventricular pacemaker: results from the MARVEL 2 study. JACC Clin Electrophysiol 6(1):94–106. https://doi.org/10.1016/j.jacep.2019.10.017

    Article  PubMed  Google Scholar 

  15. Boveda S, Lenarczyk R, Haugaa KH et al (2018) Use of leadless pacemakers in Europe: results of the European Heart Rhythm Association survey. Europace 20(3):555–559. https://doi.org/10.1093/europace/eux381

    Article  PubMed  Google Scholar 

  16. Glikson M, Nielsen JC, Kronborg MB et al (2021) 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab364

    Article  PubMed  Google Scholar 

  17. Steinwender C, Lercher P, Schukro C et al (2020) State of the art: leadless ventricular pacing: a national expert consensus of the Austrian Society of Cardiology. J Interv Card Electrophysiol 57(1):27–37. https://doi.org/10.1007/s10840-019-00680-2

    Article  PubMed  CAS  Google Scholar 

  18. Duray GZ, Ritter P, El-Chami M et al (2017) Long-term performance of a transcatheter pacing system: 12-month results from the Micra Transcatheter Pacing Study. Heart Rhythm 14(5):702–709. https://doi.org/10.1016/j.hrthm.2017.01.035

    Article  PubMed  Google Scholar 

  19. Vamos M, Erath JW, Benz AP et al (2017) Incidence of cardiac perforation with conventional and with leadless pacemaker systems: a systematic review and meta-analysis. J Cardiovasc Electrophysiol 28(3):336–346. https://doi.org/10.1111/jce.13140

    Article  PubMed  Google Scholar 

  20. Tjong FV, Reddy VY (2017) Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation 135(15):1458–1470. https://doi.org/10.1161/CIRCULATIONAHA.116.025037

    Article  PubMed  Google Scholar 

  21. Roberts PR, Clementy N, Al Samadi F et al (2017) A leadless pacemaker in the real-world setting: The Micra Transcatheter Pacing System Post-Approval Registry. Heart Rhythm 14(9):1375–1379. https://doi.org/10.1016/j.hrthm.2017.05.017

    Article  PubMed  Google Scholar 

  22. Chinitz L, Ritter P, Khelae SK et al (2018) Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: results from the Micra atrioventricular feasibility studies. Heart Rhythm 15(9):1363–1371. https://doi.org/10.1016/j.hrthm.2018.05.004

    Article  PubMed  Google Scholar 

  23. Brignole M, Auricchio A, Baron-Esquivias G et al (2013) 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 34(29):2281–2329. https://doi.org/10.1093/eurheartj/eht150

    Article  PubMed  Google Scholar 

  24. Morina-Vazquez P, Moraleda-Salas MT, Manovel-Sanchez AJ et al (2020) Early improvement of left ventricular ejection fraction by cardiac resynchronization through His bundle pacing in patients with heart failure. Europace 22(1):125–132. https://doi.org/10.1093/europace/euz296

    Article  PubMed  Google Scholar 

  25. Leon AR, Abraham WT, Curtis AB et al (2005) Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J Am Coll Cardiol 46(12):2348–2356. https://doi.org/10.1016/j.jacc.2005.08.031

    Article  PubMed  Google Scholar 

  26. Reddy VY, Miller MA, Neuzil P et al (2017) Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV study. J Am Coll Cardiol 69(17):2119–2129. https://doi.org/10.1016/j.jacc.2017.02.059

    Article  PubMed  Google Scholar 

  27. Okabe T, Hummel JD, Bank AJ et al (2021) Leadless left ventricular stimulation with WiSE-CRT system—initial experience and results from phase I of SOLVE-CRT study (nonrandomized, roll-in phase). Heart Rhythm. https://doi.org/10.1016/j.hrthm.2021.06.1195

    Article  PubMed  Google Scholar 

  28. Dreger H, Maethner K, Bondke H et al (2012) Pacing-induced cardiomyopathy in patients with right ventricular stimulation for > 15 years. Europace 14(2):238–242. https://doi.org/10.1093/europace/eur258

    Article  PubMed  Google Scholar 

  29. Leclercq C, Cazeau S, Lellouche D et al (2007) Upgrading from single chamber right ventricular to biventricular pacing in permanently paced patients with worsening heart failure: the RD-CHF study. Pacing Clin Electrophysiol 30(Suppl 1):23–30. https://doi.org/10.1111/j.1540-8159.2007.00598.x

    Article  Google Scholar 

  30. Montemerlo E, Pozzi M, De Ceglia S et al (2019) First-in-man fully leadless transvenous CRT‑P with a transseptal implant of WISE-CRT((R)) system and Micra((R)) PM. Pacing Clin Electrophysiol 42(11):1489–1492. https://doi.org/10.1111/pace.13750

    Article  PubMed  Google Scholar 

  31. Funasako M, Neuzil P, Dujka L et al (2020) Successful implementation of a totally leadless biventricular pacing approach. HeartRhythm Case Rep 6(3):153–157. https://doi.org/10.1016/j.hrcr.2019.12.002

    Article  PubMed  Google Scholar 

  32. Carabelli A, Jabeur M, Jacon P et al (2021) European experience with a first totally leadless cardiac resynchronization therapy pacemaker system. Europace 23(5):740–747. https://doi.org/10.1093/europace/euaa342

    Article  PubMed  Google Scholar 

  33. Bongiorni MG, Zucchelli G, Coluccia G et al (2016) Leadless cardiac pacemaker implant in a patient with two deep brain stimulators: a peaceful cohabitation beyond prejudices. Int J Cardiol 223:136–138. https://doi.org/10.1016/j.ijcard.2016.08.161

    Article  PubMed  Google Scholar 

  34. Tjong FV, Brouwer TF, Smeding L et al (2016) Combined leadless pacemaker and subcutaneous implantable defibrillator therapy: feasibility, safety, and performance. Europace 18(11):1740–1747. https://doi.org/10.1093/europace/euv457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Doldi MD.

Ethics declarations

Interessenkonflikt

F. Doldi, B. Biller, F. Reinke und L. Eckardt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doldi, F., Biller, B., Reinke, F. et al. Neue Entwicklungen bei kabellosen Schrittmachersystemen. Herz 46, 513–519 (2021). https://doi.org/10.1007/s00059-021-05075-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-021-05075-6

Schlüsselwörter

Keywords

Navigation