Skip to main content
Log in

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction. The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility, which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions. The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity, larger specific surface area, biocompatibility and electrocatalytic characteristics. The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode. The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase, which was beneficial to the enzyme-catalyzed reaction. The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5–280.5 µmol·L−1, a low detection limit of 2.1 µmol·L−1, good stability and reproducibility. Moreover, the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nature Reviews. Molecular Cell Biology, 2008, 9(2): 125–138

    CAS  PubMed  Google Scholar 

  2. Huang Y, Tan J, Cui L, Zhou Z, Zhou S, Zhang Z, Zheng R, Xue Y, Zhang M, Li S, et al. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosensors & Bioelectronics, 2018, 102: 560–567

    Article  CAS  Google Scholar 

  3. Sekretaryova A N, Beni V, Eriksson M, Karyakin A A, Turner A P F, Vagin M Y. Cholesterol self-powered biosensor. Analytical Chemistry, 2014, 86(19): 9540–9547

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Zhao H, Li Y, Ran X, Deng G, Zhang Y, Ye H, Zhao G, Li C P. Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst (London), 2016, 141(1): 270–278

    Article  CAS  Google Scholar 

  5. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Letters, 2015, 15(2): 1146–1151

    Article  CAS  PubMed  Google Scholar 

  6. Nantaphol S, Chailapakul O, Siangproh W. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors and Actuators. B, Chemical, 2015, 207: 193–198

    Article  CAS  Google Scholar 

  7. Gorassini A, Verardo G, Fregolent S C, Bortolomeazzi R. Rapid determination of cholesterol oxidation products in milk powder based products by reversed phase SPE and HPLC-APCI-MS/MS. Food Chemistry, 2017, 230: 604–610

    Article  CAS  PubMed  Google Scholar 

  8. Chitra J, Ghosh M, Mishra H N. Rapid quantification of cholesterol in dairy powders using Fourier transform near infrared spectroscopy and chemometrics. Food Control, 2017, 78: 342–349

    Article  CAS  Google Scholar 

  9. Galdino N M, Brehm G S, Bussamara R, Gonçalves W D G, Abarca G, Scholten J D. Sputtering deposition of gold nanoparticles onto graphene oxide functionalized with ionic liquids: biosensor materials for cholesterol detection. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(48): 9482–9486

    Article  CAS  PubMed  Google Scholar 

  10. Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chemical Society Reviews, 2013, 42(12): 5425–5438

    Article  CAS  PubMed  Google Scholar 

  11. Abdi M M, Razalli R L, Tahir P M, Chaibakhsh N, Hassani M, Mir M. Optimized fabrication of newly cholesterol biosensor based on nanocellulose. International Journal of Biological Macromolecules, 2019, 126: 1213–1222

    Article  CAS  PubMed  Google Scholar 

  12. Rison S, Akshaya K B, Bhat V S, Shanker G, Varghese A. MnO2 nanoclusters decorated on graphene modified pencil graphite electrode for non-nzymatic determination of cholesterol. Electroanalysis, 2020, 32(10): 1–10

    Article  Google Scholar 

  13. Saxena U, Das A B. Nanomaterials towards fabrication of cholesterol biosensors: key roles and design approaches. Biosensors & Bioelectronics, 2016, 75: 196–205

    Article  CAS  Google Scholar 

  14. Gao J, Huang W, Chen Z, Yi C, Jiang L. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors and Actuators. B, Chemical, 2019, 287: 102–110

    Article  CAS  Google Scholar 

  15. Garcia Raya D, Silien C, Blazquez M, Pineda T, Madueno R. Electrochemical and AFM study of the 2D-assembly of colloidal gold nanoparticles on dithiol sams tuned by ionic strength. Journal of Physical Chemistry C, 2014, 118(26): 14617–14628

    Article  CAS  Google Scholar 

  16. Ng B Y C, Xiao W, West N P, Wee E J H, Wang Y, Trau M. Rapid, single-cell electrochemical detection of mycobacterium tuberculosis using colloidal gold nanoparticles. Analytical Chemistry, 2015, 87(20): 10613–10618

    Article  CAS  PubMed  Google Scholar 

  17. Rahim M Z A, Govender-Hondros G, Adeloju S B. A single step electrochemical integration of gold nanoparticles, cholesterol oxidase, cholesterol esterase and mediator with polypyrrole films for fabrication of free and total cholesterol nanobiosensors. Talanta, 2018, 189: 418–428

    Article  CAS  PubMed  Google Scholar 

  18. Han Y, Zhang R, Dong C, Cheng F, Guo Y. Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosensors & Bioelectronics, 2019, 142: 111529

    Article  CAS  Google Scholar 

  19. Kumar-Krishnan S, Guadalupe-Ferreira García M, Prokhorov E, Estevez-González M, Pérez R, Esparza R, Meyyappan M. Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvent for an electrochemical enzymatic glucose biosensor. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(34): 7072–7081

    Article  CAS  PubMed  Google Scholar 

  20. Yuan R, Cao S R, Chai Y Q, Gao F X, Zhao Q, Tang M Y, Tong Z Q, Xie Y. Direct electrochemistry and enzymatic activity of hemoglobin in positively charged colloid Au nanoparticles and hemoglobin layer-by-layer self-assembly films. Science China. Chemistry, 2007, 50(5): 620–628

    Article  CAS  Google Scholar 

  21. Lu Z W, Li Y F, Liu T, Wang G T, Sun M M, Jiang Y Y, He H, Wang Y Y, Zou P, Wang X X, et al. A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chemical Engineering Journal, 2020, 389: 124417–124426

    Article  CAS  Google Scholar 

  22. Zhai H, Wang H, Wang S, Chen Z, Wang S, Zhou Q, Pan Y. Electrochemical determination of mangiferin and icariin based on Au-AgNPs/MWNTs-SGSs modified glassy carbon electrode. Sensors and Actuators. B, Chemical, 2018, 255: 1771–1780

    Article  CAS  Google Scholar 

  23. Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Article  CAS  PubMed  Google Scholar 

  24. Bo X, Zhou M, Guo L. Electrochemical sensors and biosensors based on less aggregated graphene. Biosensors & Bioelectronics, 2017, 89(Pt 1): 167–186

    Article  CAS  Google Scholar 

  25. Ambrosi A, Chua C K, Latiff N M, Loo A H, Wong C H A, Eng A Y S, Bonanni A, Pumera M. Graphene and its electrochemistry—an update. Chemical Society Reviews, 2016, 45(9): 2458–2493

    Article  PubMed  Google Scholar 

  26. Jiang J, Ding D, Wang J, Lin X, Diao G. Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst (London), 2021, 146(3): 964–970

    Article  CAS  Google Scholar 

  27. Fritea L, Tertis M, Sandulescu R, Cristea C. Chapter eleven. Enzyme-graphene platforms for electrochemical biosensor design with biomedical applications. In: Kumar C V, ed. Methods in Enzymology. Massachusetts: Academic Press, 2018, 293–333

    Google Scholar 

  28. Wu S, Hao J, Yang S, Sun Y, Wang Y, Zhang W, Mao H, Song X M. Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing. Sensors and Actuators. B, Chemical, 2019, 298: 126856–126864

    Article  CAS  Google Scholar 

  29. Wu S Y, Wang Y X, Mao H, Wang C, Xia L X, Zhang Y, Ge H, Song X M. Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid-graphene nanocomposite. RSC Advances, 2016, 6(64): 59487–59496

    Article  CAS  Google Scholar 

  30. Patil A J, Vickery J L, Scott T B, Mann S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials, 2010, 21(31): 3159–3164

    Article  Google Scholar 

  31. Xu Z, Lei X, Tu Y, Tan Z J, Song B, Fang H. Dynamic cooperation of hydrogen binding and π stacking in ssdna adsorption on graphene oxide. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(53): 13100–13104

    CAS  Google Scholar 

  32. Zhang Q, Qiao Y, Hao F, Zhang L, Wu S, Li Y, Li J, Song X M. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(27): 8133–8139

    CAS  Google Scholar 

  33. Patil A, Vickery J, Scott T, Mann S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials, 2009, 21(31): 3159–3164

    Article  CAS  Google Scholar 

  34. Jr Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339

    Article  CAS  Google Scholar 

  35. Gittins D I, Caruso F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angewandte Chemie International Edition, 2001, 40(16): 3001–3004

    Article  CAS  PubMed  Google Scholar 

  36. Dikmen S, Yilmaz G, Yörükoğullari E, Korkmaz E. Zeta potential study of natural- and acid-activated sepiolites in electrolyte solutions. Canadian Journal of Chemical Engineering, 2012, 90(3): 785–792

    Article  CAS  Google Scholar 

  37. Zhang Q, Wu S, He M, Zhang L, Liu Y, Li J, Song X M. Preparation and bioelectrochemical application of gold nanoparticles-chitosangraphene nanomaterials. Acta Chimica Sinica, 2012, 70(21): 2213–2219

    Article  CAS  Google Scholar 

  38. Zhang Y, Li X, Li D, Wei Q. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids and Surfaces. B, Biointerfaces, 2020, 186: 110683–110690

    Article  CAS  PubMed  Google Scholar 

  39. Li X R, Xu J J, Chen H Y. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor. Electrochimica Acta, 2011, 56(25): 9378–9385

    Article  CAS  Google Scholar 

  40. Zhu L, Xu L, Tan L, Tan H, Yang S, Yao S. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta, 2013, 106: 192–199

    Article  CAS  PubMed  Google Scholar 

  41. Rashidi K, Mahmoudi M, Mohammadi G, Zangeneh M M, Korani S, Goicoechea H C, Gu H W, Jalalvand A R. Simultaneous co-immobilization of three enzymes onto a modified glassy carbon electrode to fabricate a high-performance amperometric biosensor for determination of total cholesterol. International Journal of Biological Macromolecules, 2018, 120(Pt A): 587–595

    Article  CAS  PubMed  Google Scholar 

  42. Thakur N, Kumar M, Das Adhikary S, Mandal D, Nagaiah T C. PVIM-Co5POM/MNC composite as a flexible electrode for the ultrasensitive and highly selective non-enzymatic electrochemical detection of cholesterol. Chemical Communications, 2019, 55(34): 5021–5024

    Article  CAS  PubMed  Google Scholar 

  43. Antuch M, Matos-Peralta Y, Llanes D, Echevarría F, Rodríguez-Hernández J, Marin M H, Díaz-García A M, Reguera L. Bimetallic Co2+ and Mn2+ hexacyanoferrate for hydrogen peroxide electrooxidation and its application in a highly sensitive cholesterol biosensor. ChemElectroChem, 2019, 6(5): 1567–1573

    Article  CAS  Google Scholar 

  44. Pramanik K, Sarkar P, Bhattacharyay D, Majumdar P. One step electrode fabrication for direct electron transfer cholesterol biosensor based on composite of polypyrrole, green reduced graphene oxide and cholesterol oxidase. Electroanalysis, 2018, 30(11): 2719–2730

    Article  CAS  Google Scholar 

  45. Rahman M M, Li X B, Kim J, Lim B O, Ahammad A J S, Lee J J. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators. B, Chemical, 2014, 202: 536–542

    Article  CAS  Google Scholar 

  46. Komathi S, Muthuchamy N, Lee K P, Gopalan A I. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosensors & Bioelectronics, 2016, 84: 64–71

    Article  CAS  Google Scholar 

  47. Phetsang S, Jakmunee J, Mungkornasawakul P, Laocharoensuk R, Ounnunkad K. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry (Amsterdam, Netherlands), 2019, 127: 125–135

    Article  CAS  Google Scholar 

  48. Yang D P, Guo W, Cai Z, Chen Y, He X, Huang C, Zhuang J, Jia N. Highly sensitive electrochemiluminescence biosensor for cholesterol detection based on AgNPs-BSA-MnO2 nanosheets with superior biocompatibility and synergistic catalytic activity. Sensors and Actuators. B, Chemical, 2018, 260: 642–649

    Article  CAS  Google Scholar 

  49. Wu Q, He L, Jiang Z W, Li Y, Cao Z M, Huang C Z, Li Y F. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosensors & Bioelectronics, 2019, 145: 111704

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51773085, 52071171), the Liaoning Province Doctor Start-up Fund (Grant No. 20170520282) and the Doctor Start-up Fund of Liaoning University (Grant No. a280008020), research fund pre-declaration project of Liaoning University (Grant No. LDGY2019001), teaching reform research project of Liaoning University (Grant Nos. JG2018YB20, LNDXJG20183013, JG2020ZSWT022), Liaoning Revitalization Talents Program—Pan Deng Scholars (Grant No. XLYC1802005), Liaoning BaiQianWan Talents Program (Grant No. LNBQW2018B0048), Natural Science Fund of Liaoning Province for Excellent Young Scholars (Grant No. 2019-YQ-04), and Key Project of Scientific Research of the Education Department of Liaoning Province (Grant No. LZD201902), the Young Scientific and Technological Talents Project of the Department of Education of Liaoning Province (Grant Nos. LQN201903 and LQN202008), the Foundation for Young Scholars of Liaoning University (Grant No. LDQN2019007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyi Ma or Xi-Ming Song.

Electronic Supplementary Material

11705_2021_2112_MOESM1_ESM.pdf

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Sui, C., Wang, C. et al. Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol. Front. Chem. Sci. Eng. 15, 1572–1582 (2021). https://doi.org/10.1007/s11705-021-2112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2112-4

Keywords

Navigation