Skip to main content
Log in

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman A J, Jenkins A, Ferrier R C, Li H, Luo W, Wang T. Impacts of soil and water pollution on food safety and health risks in China. Environment International, 2015, 77: 5–15

    Article  CAS  PubMed  Google Scholar 

  2. Schwarzenbach R P, Egli T, Hofstetter T B, Gunten U V, Wehrli B. Global water pollution and human health. Social Science Electronic Publishing, 2010, 35: 109–136

    Google Scholar 

  3. Salazar R, Brillas E, Sirés I. Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye disperse blue 3. Applied Catalysis B: Environmental, 2012, 115–116(15): 107–116

    Article  Google Scholar 

  4. Robinson T, Mcmullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, 77(3): 247–255

    Article  CAS  PubMed  Google Scholar 

  5. Martínez-Huitle C A, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 2009, 87(3–4): 105–145

    Article  Google Scholar 

  6. Solís M, Solís A, Pérez H I, Manjarrez N, Flores M. Microbial decolouration of azo dyes: a review. Process Biochemistry, 2012, 47(12): 1723–1748

    Article  Google Scholar 

  7. Kanagaraj J, Senthilvelan T, Panda R C. Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy, 2014, 17(6): 1443–1456

    Article  Google Scholar 

  8. Bafana A, Devi S S, Chakrabarti T. Azo dyes: past, present and the future. Environmental Reviews, 2011, 19(NA): 350–370

    Article  CAS  Google Scholar 

  9. Kumar Reddy D H, Lee S M. Water pollution and treatment technologies. Journal of Environmental & Analytical Toxicology, 2012, 2(5): e103

    Article  Google Scholar 

  10. Singh R L, Singh P K. Bio-removal of azo dyes: a review. International Journal of Applied Sciences and Biotechnology, 2017, 5(2): 108–126

    Article  CAS  Google Scholar 

  11. Wang Q, Yang Z. Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 2016, 218: 358–365

    Article  CAS  PubMed  Google Scholar 

  12. Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: a review. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676–4697

    Article  CAS  Google Scholar 

  13. Vilhunen S, Sillanp M. Recent developments in photochemical and chemical AOPs in water treatment: a mini-review. Reviews in Environmental Science and Biotechnology, 2010, 9(4): 323–330

    Article  CAS  Google Scholar 

  14. Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics in Catalysis, 2005, 33(1–4): 3–50

    Article  Google Scholar 

  15. Sushma K M, Saroha A K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: a review. Journal of Environmental Management, 2018, 228: 169–188

    Article  CAS  PubMed  Google Scholar 

  16. Holt P K, Barton G W, Mitchell C A. The future for electrocoagulation as a localised water treatment technology. Chemosphere, 2005, 59(3): 355–367

    Article  CAS  PubMed  Google Scholar 

  17. Chen G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004, 38(1): 11–41

    Article  Google Scholar 

  18. Mollah M Y, Morkovsky P, Gomes J A, Kesmez M, Parga J, Cocke D L. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 2004, 114(1–3): 199–210

    Article  CAS  PubMed  Google Scholar 

  19. Sivasankar T, Moholkar V S. Mechanistic approach to intensification of sonochemical degradation of phenol. Chemical Engineering Journal Lausanne, 2009, 149(1–3): 57–69

    Article  CAS  Google Scholar 

  20. Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2005, 6(4): 264–273

    Article  CAS  Google Scholar 

  21. Wang J, Chen H. Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Science of the Total Environment, 2020, 704: 135249

    Article  CAS  Google Scholar 

  22. Aguilar Z G, Brillas E, Salazar M, Nava J L, Sirés I. Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of acid yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Applied Catalysis B: Environmental, 2017, 206: 44–52

    Article  CAS  Google Scholar 

  23. Mohan N, Balasubramanian N. In situ electrocatalytic oxidation of acid violet 12 dye effluent. Journal of Hazardous Materials, 2006, 136(2): 239–243

    Article  CAS  PubMed  Google Scholar 

  24. Dhaouadi A, Monser L, Adhoum N. Anodic oxidation and electro-Fenton treatment of rotenone. Electrochimica Acta, 2009, 54(19): 4473–4480

    Article  CAS  Google Scholar 

  25. Chu Y Y, Qian Y, Wang W J, Deng X L. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. Journal of Hazardous Materials, 2012, 199–200: 179–185

    Article  PubMed  Google Scholar 

  26. Swierk J R, Regan K P, Jiang J, Brudvig G W, Schmuttenmaer C A. Rutile TiO2 as an anode material for water-splitting dyesensitized photoelectrochemical cells. American Chemical Society Energy Letters, 2016: 603–606

  27. Sengupta D, Das P, Mondal B, Mukherjee K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application: a review. Renewable & Sustainable Energy Reviews, 2016, 60: 356–376

    Article  CAS  Google Scholar 

  28. Wu J, He Z, Du X, Zhang C, Fu D. Electrochemical degradation of acid orange II dye using mixed metal oxide anode: role of supporting electrolytes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59: 303–310

    Article  CAS  Google Scholar 

  29. Garcia-Segura S, Vieira dos Santos E, Martínez-Huitle C A. Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochemistry Communications, 2015, 59: 52–55

    Article  CAS  Google Scholar 

  30. Cornejo O M, Murrieta M F, Castañeda L F, Nava J L. Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: a critical review. Electrochimica Acta, 2020, 331: 135373

    Article  CAS  Google Scholar 

  31. Ganiyu S O, Martínez-Huitle C. Nature, Mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical waste-water treatment. ChemElectroChem, 2019, 6(9): 2379–2392

    Article  CAS  Google Scholar 

  32. Chaplin B P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 2014, 16(6): 1182–1203

    Article  CAS  Google Scholar 

  33. Chen J Y, Li N, Zhao L. Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment. Journal of Power Sources, 2014, 254: 316–322

    Article  CAS  Google Scholar 

  34. Wei L, Guo S, Yan G, Chen C, Jiang X. Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochimica Acta, 2010, 55(28): 8615–8620

    Article  CAS  Google Scholar 

  35. Grace Pavithra K, Senthil Kumar P, Carolin Christopher F, Saravanan A. Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. Journal of Physics and Chemistry of Solids, 2017, 110: 379–385

    Article  Google Scholar 

  36. Xiong Y, Strunk P J, Xia H, Zhu X, Karlsson H T. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Research, 2001, 35(17): 4226–4230

    Article  CAS  PubMed  Google Scholar 

  37. Gu X, Lu X, Tian J, Li X, Zhou B, Zheng X, Xu J. Degradation of folic acid wastewater by electro-Fenton with three-dimensional electrode and its kinetic study. Royal Society Open Science, 2018, 5(1): 170926

    Article  Google Scholar 

  38. Xiong Y, He C, Karlsson H T, Zhu X. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol. Chemosphere, 2003, 50(1): 131–136

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M. Three-dimensional electrochemical process for wastewater treatment: a general review. Chemical Engineering Journal, 2013, 228: 455–467

    Article  CAS  Google Scholar 

  40. Zhao H Z, Sun Y, Xu L N, Ni J R. Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway. Chemosphere, 2010, 78(1): 46–51

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Zhang L, Wang H, Bian Z. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni-Ce/OMC particle electrodes. Science of the Total Environment, 2020, 724: 138170

    Article  CAS  Google Scholar 

  42. Chaplin B P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 2014, 16(6): 1182–1203

    Article  CAS  Google Scholar 

  43. Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 2009, 109(12): 6541–6569

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 2006, 35(12): 1324–1340

    Article  CAS  PubMed  Google Scholar 

  45. Uranga-Flores A, de la Rosa-Júarez C, Gutierrez-Granados S, de Moura D C, Martínez-Huitle C A, Peralta Hernández J M. Electrochemical promotion of strong oxidants to degrade acid red 211: effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 2015, 738: 84–91

    Article  CAS  Google Scholar 

  46. Brillas E, Sire S I, Oturan M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 2009, 109(12): 6570–6631

    Article  CAS  PubMed  Google Scholar 

  47. Schaller V, Comninellis C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta, 1997, 42(13–14): 2009–2012

    Google Scholar 

  48. Panizza M, Bocca C, Cerisola G. Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research, 2000, 34(9): 2601–2605

    Article  CAS  Google Scholar 

  49. Comninellis C, Vercesi G P. Characterization of DSA-type oxygen evolving electrodes: choice of a coating. Journal of Applied Electrochemistry, 1991, 21(4): 335–345

    Article  CAS  Google Scholar 

  50. Araújo C, Oliveira G R, Fernandes N S, Zanta C, Castro S, da Silva D R, Martínez-Huitle C. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environmental Science and Pollution Research International, 2014, 21(16): 9777–9784

    Article  PubMed  Google Scholar 

  51. Zarei M, Salari D, Niaei A, Khataee A. Peroxi-coagulation degradation of C.I. basic yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochimica Acta, 2009, 54(26): 6651–6660

    Article  CAS  Google Scholar 

  52. Hao Y, Ge W, Liu Y. Application of electrode materials in the electrocatalytic oxidation of organic wastewater. Chemical Engineering, 2012, (1): 35–37

  53. Särkkä H, Bhatnagar A, Sillanpää M. Recent developments of electro-oxidation in water treatment—a review. Journal of Electroanalytical Chemistry, 2015, 754: 46–56

    Article  Google Scholar 

  54. Zhao Y, Wang D, Zhao C. Research progress of electrode materials for electrocatalytic oxidation treatment of refractory wastewater. Materials Reports, 2019, 33: 1125–1132

    Article  Google Scholar 

  55. Brillas E, Martínez-Huitle C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166–167: 603–643

    Article  Google Scholar 

  56. Velazquez-Peña S, Linares-Hernández I, Martínez-Miranda V, Barrera-Díaz C, Bilyeu B. Azo dyes as electron transfer mediators in the electrochemical reduction of Cr(VI) using boron-doped diamond electrodes. Fuel, 2013, 110: 12–16

    Article  Google Scholar 

  57. Bellagamba R, Comninellis C, Vatistas N. Direct electrochemical oxidation of polyacrylates. Annali di Chimica, 2002, 92(10): 937

    CAS  PubMed  Google Scholar 

  58. Marselli B, Garcia-Gomez J, Michaud P A, Rodrigo M A, Comninellis C. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, 2003, 150(3): D79

    Article  CAS  Google Scholar 

  59. Araujo C K, Oliveira G R, Fernandes N S, Zanta C L, Castro S S, da Silva D R, Martinez-Huitle C A. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environmental Science and Pollution Research International, 2014, 21(16): 9777–9784

    Article  CAS  PubMed  Google Scholar 

  60. Ganiyu S O, Oturan N, Raffy S, Cretin M, Esmilaire R, Van Hullebusch E, Esposito G, Oturan M A. Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electro-oxidation of organic pollutants: a case study of kinetics, mineralization and toxicity assessment of amoxicillin. Water Research, 2016, 106: 171–182

    Article  CAS  PubMed  Google Scholar 

  61. Oturan N, Ganiyu S O, Raffy S, Oturan M A. Sub-stoichiometric titanium oxide as a new anode material for electro-Fenton process: application to electrocatalytic destruction of antibiotic amoxicillin. Applied Catalysis B: Environmental, 2017, 217: 214–223

    Article  CAS  Google Scholar 

  62. Michaud P A, Panizza M, Ouattara L, Diaco T, Foti G, Comninellis C. Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. Journal of Applied Electrochemistry, 2003, 33(2): 151–154

    Article  CAS  Google Scholar 

  63. Song H, Yan L, Ma J, Jiang J, Cai G, Zhang W, Zhang Z, Zhang J, Yang T. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors. Water Research, 2017, 116: 182–193

    Article  CAS  PubMed  Google Scholar 

  64. Li M, Feng C, Zhang Z, Sugiura N. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes. Electrochimica Acta, 2009, 54(20): 4600–4606

    Article  CAS  Google Scholar 

  65. Stucki S, Kötz R, Carcer B, Suter W. Electrochemical waste water treatment using high overvoltage anodes Part II: anode performance and applications. Journal of Applied Electrochemistry, 1991, 21(2): 99–104

    Article  CAS  Google Scholar 

  66. Szpyrkowicz L, Naumczyk J, Zilio-Grandi F. Electrochemical treatment of tannery wastewater using ja:math and Ti/Pt/Ir electrodes. Water Research, 1995, 29(2): 517–524

    Article  CAS  Google Scholar 

  67. Ntagia E, Fiset E, da Silva Lima L, Pikaar I, Zhang X, Jeremiasse A W, Prevoteau A, Rabaey K. Anode materials for sulfide oxidation in alkaline wastewater: an activity and stability performance comparison. Water Research, 2019, 149: 111–119

    Article  CAS  PubMed  Google Scholar 

  68. Yavuz Y, Koparal A S, Öğütveren Ü B. Treatment of petroleum refinery wastewater by electrochemical methods. Desalination, 2010, 258(1–3): 201–205

    Article  CAS  Google Scholar 

  69. Aquino J M, Rocha-Filho R C, Ruotolo L A M, Bocchi N, Biaggio S R. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chemical Engineering Journal, 2014, 251: 138–145

    Article  CAS  Google Scholar 

  70. Szpyrkowicz L, Kaul S N, Neti R N, Satyanarayan S. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Research, 2005, 39(8): 1601–1613

    Article  CAS  PubMed  Google Scholar 

  71. Feng Y, Li J, Wang X, Wang T, Li S, Wei H, Li Q, Christensen E. Electrocatalytic properties of Ti/Pt-IrO2 anode for oxygen evolution in PEM water electrolysis. International Journal of Hydrogen Energy, 2010, 35(15): 8049–8055

    Article  Google Scholar 

  72. Recio F J, Herrasti P, Sirés I, Kulak A N, Bavykin D V, Ponce-de-León C, Walsh F C. The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochimica Acta, 2011, 56(14): 5158–5165

    Article  CAS  Google Scholar 

  73. Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X. Electrochemical degradation of azo dye C.I. reactive red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochimica Acta, 2010, 55(11): 3606–3613

    Article  CAS  Google Scholar 

  74. An H, Cui H, Zhang W, Zhai J, Qian Y, Xie X, Li Q. Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb-SnO2/PbO2 anode in the degradation of C.I. reactive blue 194 (RB 194). Chemical Engineering Journal, 2012, 209: 86–93

    Article  CAS  Google Scholar 

  75. Li Q, Zhang Q, Cui H, Ding L, Wei Z, Zhai J. Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of rhodamine B. Chemical Engineering Journal, 2013, 228: 806–814

    Article  CAS  Google Scholar 

  76. Yi T F, Zhu Y R, Tao W, Luo S, Xie Y, Li X F. Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399: 26–41

    Article  CAS  Google Scholar 

  77. Ahmed Basha C, Saravanathamizhan R, Nandakumar V, Chitra K, Lee C W. Copper recovery and simultaneous COD removal from copper phthalocyanine dye effluent using bipolar disc reactor. Chemical Engineering Research & Design, 2013, 91(3): 552–559

    Article  CAS  Google Scholar 

  78. Soni B D, Ruparelia J P. Decolourization and mineralization of reactive black-5 with transition metal oxide coated electrodes by electrochemical oxidation. Procedia Engineering, 2013, 51: 335–341

    Article  CAS  Google Scholar 

  79. Tavares M G, Silva L, Solano A, Tonholo J, Martínez-Huitle C, Zanta C. Electrochemical oxidation of methyl red using Ti/Ru0.3Ti0.7O2 and Ti/Pt anode. Chemical Engineering Journal, 2012, 204–206: 141–150

    Article  Google Scholar 

  80. Del Río A I, Fernández J, Molina J, Bonastre J, Cases F. Electrochemical treatment of a synthetic wastewater containing a sulphonated azo dye. Determination of naphthalenesulphonic compounds produced as main by-products. Desalination, 2011, 273(2–3): 428–435

    Article  Google Scholar 

  81. Zhou M, Särkkä H, Sillanpää M. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology, 2011, 78(3): 290–297

    Article  CAS  Google Scholar 

  82. Hmani E, Samet Y, Abdelhédi R. Electrochemical degradation of auramine-O dye at boron-doped diamond and lead dioxide electrodes. Diamond and Related Materials, 2012, 30: 1–8

    Article  CAS  Google Scholar 

  83. Bian X, Xia Y, Zhan T, Wang L, Zhou W, Dai Q, Chen J. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere, 2019, 233: 762–770

    Article  CAS  PubMed  Google Scholar 

  84. Lin H, Hou L, Zhang H. Degradation of orange II in aqueous solution by a novel electro/Fe3O4 process. Water Science and Technology, 2013, 68(11): 2441–2447

    Article  CAS  PubMed  Google Scholar 

  85. Morais C C D O, Da Silva A J C, Ferreira M B, De Araújo D M, Zanta C L P S, Castro S S L. Electrochemical degradation of methyl red using Ti/Ru0.3Ti0.7O2: fragmentation of azo group. Electrocatalysis (New York), 2013, 4(4): 312–319

    CAS  Google Scholar 

  86. Palani R, Balasubramanian N. Electrochemical treatment of methyl orange dye wastewater by rotating disc electrode: optimisation using response surface methodology. Coloration Technology, 2012, 128(6): 434–439

    Article  CAS  Google Scholar 

  87. El-Ashtoukhy E S Z, Amin N K, Abdelwahab O. Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor. Chemical Engineering Journal, 2009, 146(2): 205–210

    Article  CAS  Google Scholar 

  88. Hamza M, Ammar S, Abdelhédi R. Electrochemical oxidation of 1,3,5-trimethoxybenzene in aqueous solutions at gold oxide and lead dioxide electrodes. Electrochimica Acta, 2011, 56(11): 3785–3789

    Article  CAS  Google Scholar 

  89. Awad H S, Galwa N A. Electrochemical degradation of acid blue and basic brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 2005, 61(9): 1327–1335

    Article  CAS  PubMed  Google Scholar 

  90. Pletcher D, Walsh F C. Industrial Electrochemistry. 2nd ed. Bangalore: Macmillan Ltd., 2012, 548–549

    Google Scholar 

  91. Li X, Pletcher D, Walsh F C. Electrodeposited lead dioxide coatings. Chemical Society Reviews, 2011, 40(7): 3879–3889

    Article  CAS  PubMed  Google Scholar 

  92. Weng M, Zhou Z, Zhang Q. Electrochemical degradation of typical dyeing wastewater in aqueous solution: performance and mechanism. International Journal of Electrochemical Science, 2013, 8: 290–296

    CAS  Google Scholar 

  93. Samarghandi M R, Dargahi A, Shabanloo A, Nasab H Z, Vaziri Y, Ansari A. Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arabian Journal of Chemistry, 2020, 13(8): 6847–6864

    Article  CAS  Google Scholar 

  94. Hu X, Yu Y, Yang L. Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution. Journal of Solid State Electrochemistry, 2015, 19(6): 1599–1609

    Article  CAS  Google Scholar 

  95. Yang H, Liang J, Li Z, Liang Z. Electrochemical oxidation degradation of methyl orange wastewater by Nb/PbO2 electrode. International Journal of Electrochemical Science, 2016, 11(2): 1121–1134

    CAS  Google Scholar 

  96. Lei J, Xu Z, Xu H, Qiao D, Wang Y. Pulsed electrochemical oxidation of acid red G and crystal violet by PbO2 anode. Journal of Environmental Chemical Engineering, 2020, 8(3): 103773

    Article  CAS  Google Scholar 

  97. Elaissaoui I, Akrout H, Grassini S, Fulginiti D, Bousselmi L. Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of Amaranth dye. Chemosphere, 2018, 217: 26–34

    Article  PubMed  Google Scholar 

  98. Jin Y, Wang F, Xu M, Hun Y, Fang W, Wei Y, Zhu C. Preparation and characterization of Ce and PVP co-doped PbO2 electrode for waste water treatment. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51: 135–142

    Article  CAS  Google Scholar 

  99. Mukimin A, Vistanty H, Zen N. Oxidation of textile wastewater using cylinder Ti/β-PbO2 electrode in electrocatalytic tube reactor. Chemical Engineering Journal, 2015, 259: 430–437

    Article  CAS  Google Scholar 

  100. Feng Z, Feng C, Li W, Cui J. Indirect electrochemical oxidation of dye wastewater containing acid orange 7 using Ti/RuO2-Pt Electrode. International Journal of Electrochemical Science, 2014, 9(2): 943–954

    Google Scholar 

  101. Xu M, Wang Z, Wang F, Hong P, Wang C, Ouyang X, Zhu C, Wei Y, Hun Y, Fang W. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation. Electrochimica Acta, 2016, 201: 240–250

    Article  CAS  Google Scholar 

  102. Isarain-Chávez E, Baró M D, Rossinyol E, Morales-Ortiz U, Sort J, Brillas E, Pellicer E. Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes. Electrochimica Acta, 2017, 244: 199–208

    Article  Google Scholar 

  103. Baddouh A, Bessegato G G, Rguiti M M, El Ibrahimi B, Bazzi L, Hilali M, Zanoni M V B. Electrochemical decolorization of rhodamine B dye: influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 2018, 6(2): 2041–2047

    Article  CAS  Google Scholar 

  104. Silva R, Neto S A, Andrade A. Electrochemical degradation of reactive dyes at different DSA compositions. Journal of the Brazilian Chemical Society, 2011, 22(1): 126–133

    Article  Google Scholar 

  105. Baddouh A, El Ibrahimi B, Amaterz E, Rguiti M M, Bazzi L, Hilali M. Removal of the rhodamine B dye at Ti/Ru0.3Ti0.7O2 anode using flow cell system. Journal of Chemistry, 2019, 2019: 1–10

    Article  Google Scholar 

  106. Santos D H S, Duarte J L S, Tavares M G R, Tavares M G, Friedrich L C, Meili L, Pimentel W R O, Tonholo J, Zanta C L P S. Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA electrodes. Chemical Engineering and Processing, 2020, 153: 107940

    Article  CAS  Google Scholar 

  107. Faridayunus R, Zheng Y M, Nanayakkara K G N, Chen J P. Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Industrial & Engineering Chemistry Research, 2009, 48(16): 7466–7473

    Article  CAS  Google Scholar 

  108. Wächter N, Pereira G F, Rocha-Filho R C, Bocchi N, Biaggio S R. Comparative electrochemical degradation of the acid yellow 49 dye using boron-doped diamond, beta-PbO2, and DSA (R) anodes in a flow reactor. International Journal of Electrochemical Science, 2014, 10: 1361–1371

    Google Scholar 

  109. Saad M E K, Rabaaoui N, Elaloui E, Moussaoui Y. Mineralization of p-methylphenol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Separation and Purification Technology, 2016, 171: 157–163

    Article  CAS  Google Scholar 

  110. Martínez-Huitle C A, dos Santos E V, de Araújo D M, Panizza M. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 2012, 674: 103–107

    Article  Google Scholar 

  111. Li C, Zhang M, Song C, Tao P, Sun M, Shao M, Wang T. Enhanced treatment ability of membrane technology by integrating an electric field for dye wastewater treatment: a review. Journal of AOAC International, 2018, 101(5): 1341–1352

    Article  CAS  PubMed  Google Scholar 

  112. Chatzisymeon E, Xekoukoulotakis N P, Diamadopoulos E, Katsaounis A, Mantzavinos D. Boron-doped diamond anodic treatment of olive mill wastewaters: statistical analysis, kinetic modeling and biodegradability. Water Research, 2009, 43(16): 3999–4009

    Article  CAS  PubMed  Google Scholar 

  113. Anglada A, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E. Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation byproducts. Water Research, 2011, 45(2): 828–838

    Article  CAS  PubMed  Google Scholar 

  114. Ramírez C, Saldaña A, Hernández B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Hernández J M. Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 571–579

    Article  Google Scholar 

  115. Migliorini F L, Braga N A, Alves S A, Lanza M R, Baldan M R, Ferreira N G. Anodic oxidation of wastewater containing the reactive orange 16 Dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials, 2011, 192(3): 1683–1689

    Article  CAS  PubMed  Google Scholar 

  116. Palma-Goyes R E, Guzman-Duque F L, Penuela G, Gonzalez I, Nava J L, Torres-Palma R A. Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products. Chemosphere, 2010, 81(1): 26–32

    Article  CAS  PubMed  Google Scholar 

  117. He Y, Wang X, Huang W, Chen R, Lin H, Li H. Application of porous boron-doped diamond electrode towards electrochemical mineralization of triphenylmethane dye. Journal of Electroanalytical Chemistry, 2016, 775: 292–298

    Article  CAS  Google Scholar 

  118. Juang Y, Nurhayati E, Huang C, Pan J R, Huang S. A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Separation and Purification Technology, 2013, 120: 289–295

    Article  CAS  Google Scholar 

  119. Daghrir R, Drogui P, Tshibangu J. Efficient treatment of domestic wastewater by electrochemical oxidation process using bored doped diamond anode. Separation and Purification Technology, 2014, 131: 79–83

    Article  CAS  Google Scholar 

  120. Mei R, Wei Q, Zhu C, Ye W, Zhou B, Ma L, Yu Z, Zhou K. 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: a high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Applied Catalysis B: Environmental, 2019, 245: 420–427

    Article  CAS  Google Scholar 

  121. Brito C N, Ferreira M B, de O. Marcionilio S M L, de Moura Santos E C M, Léon J J L, Ganiyu S O, Martínez-Huitle C A. Electrochemical oxidation of acid violet 7 dye by using Si/BDD and Nb/BDD electrodes. Journal of the Electrochemical Society, 2018, 165(5): E250–E255

    Article  CAS  Google Scholar 

  122. Brito C N, Ferreira M B, de Moura Santos E C M, Léon J J L, Ganiyu S O, Martínez-Huitle C A. Electrochemical degradation of azo-dye acid violet 7 using BDD anode: effect of flow reactor configuration on cell hydrodynamics and dye removal efficiency. Journal of Applied Electrochemistry, 2018, 48(12): 1321–1330

    Article  CAS  Google Scholar 

  123. Fajardo A S, Martins R C, Martínez-Huitle C A, Quinta-Ferreira R M. Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochimica Acta, 2016, 210: 96–104

    Article  CAS  Google Scholar 

  124. Soni B D, Patel U D, Agrawal A, Ruparelia J P. Application of BDD and DSA electrodes for the removal of RB 5 in batch and continuous operation. Journal of Water Process Engineering, 2017, 17: 11–21

    Article  Google Scholar 

  125. Bogdanowicz R, Fabiańska A, Golunski L, Sobaszek M, Gnyba M, Ryl J, Darowicki K, Ossowski T, Janssens S D, Haenen K, et al. Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diamond and Related Materials, 2013, 39: 82–88

    Article  CAS  Google Scholar 

  126. Santos J E L, da Silva D R, Martínez-Huitle C A, dos Santos E V, Quiroz M A. Cathodic hydrogen production by simultaneous oxidation of methyl red and 2, 4-dichlorophenoxyacetate aqueous solutions using Pb/PbO2, Ti/Sb-doped SnO2 and Si/BDD anodes. Part 1: electrochemical oxidation. Royal Society of Chemistry Advances, 2020, 10(62): 37695–37706

    Google Scholar 

  127. Zhu C, Jiang C, Chen S, Mei R, Wang X, Cao J, Ma L, Zhou B, Wei Q, Ouyang G, et al. Ultrasound enhanced electrochemical oxidation of alizarin red S on boron doped diamond (BDD) anode: effect of degradation process parameters. Chemosphere, 2018, 209: 685–695

    Article  CAS  PubMed  Google Scholar 

  128. Liu W, Ai Z, Zhang L. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal of Hazardous Materials, 2012, 243: 257–264

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Yu Z, Hou Y, Peng Z, Wang L. Highly efficient Pd-Fe/Ni foam as heterogeneous Fenton catalysts for the three-dimensional electrode system. Catalysis Communications, 2016, 86: 63–66

    Article  CAS  Google Scholar 

  130. He W, Ma Q, Wang J, Yu J, Bao W, Ma H, Amrane A. Preparation of novel kaolin-based particle electrodes for treating methyl orange wastewater. Applied Clay Science, 2014, 99: 178–186

    Article  CAS  Google Scholar 

  131. Li X, Wu Y, Zhu W, Xue F, Qian Y, Wang C. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields. Electrochimica Acta, 2016, 220: 276–284

    Article  CAS  Google Scholar 

  132. Wei J, Feng Y, Liu J, Zhu L. Preparation and electrocatalytic characteristics of ceramic ring particle electrodes loaded with Sb roped SnO2. Journal of the Chinese Ceramic Society, 2011, 39(5): 799–805

    CAS  Google Scholar 

  133. Yue L, Wang K, Guo J, Yang J, Luo X, Lian J, Wang L. Enhanced electrochemical oxidation of dye wastewater with Fe2O3 supported catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20(2): 725–731

    Article  CAS  Google Scholar 

  134. Shen Z M, Wu D, Yang J, Yuan T, Wang W H, Jia J P. Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 2006, 131(1–3): 90–97

    Article  CAS  PubMed  Google Scholar 

  135. Esquivel K, Arriaga L G, Rodriguez F J, Martinez L, Godinez L A. Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Research, 2009, 43(14): 3593–3603

    Article  CAS  PubMed  Google Scholar 

  136. Bessegato G G, de Almeida L C, Ferreira S L C, Zanoni M V B. Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye. Journal of Environmental Chemical Engineering, 2019, 7(4): 103264

    Article  CAS  Google Scholar 

  137. Pan G, Jing X, Ding X, Shen Y, Xu S, Miao W. Synergistic effects of photocatalytic and electrocatalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater. Journal of Alloys and Compounds, 2019, 809: 151749

    Article  CAS  Google Scholar 

  138. Solano A M S, Garcia-Segura S, Martínez-Huitle C A, Brillas E. Degradation of acidic aqueous solutions of the diazo dye congo red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Applied Catalysis B: Environmental, 2015, 168–169: 559–571

    Article  Google Scholar 

  139. Umukoro E H, Peleyeju M G, Ngila J C, Arotiba O A. Towards wastewater treatment: photo-assisted electrochemical degradation of nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chemical Engineering Journal, 2017, 317: 290–301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering Fund (Grant No. NCC2020FH11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongfang Liu or Minghui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Liu, D. & Zhang, M. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Front. Chem. Sci. Eng. 15, 1427–1443 (2021). https://doi.org/10.1007/s11705-021-2108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2108-0

Keywords

Navigation