Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A photonic integrated quantum secure communication system

Abstract

Photonic integrated circuits hold great promise in enabling the practical wide-scale deployment of quantum communications; however, despite impressive experiments of component functionality, a fully operational quantum communication system using photonic chips is yet to be demonstrated. Here we demonstrate an entirely standalone secure communication system based on photonic integrated circuits—assembled into compact modules—for quantum random number generation and quantum key distribution at gigahertz clock rates. The bit values, basis selection and decoy pulse intensities used for quantum key distribution are chosen at random, and are based on the output of a chip-based quantum random number generator operating at 4 Gb s–1. Error correction and privacy amplification are performed in real time to produce information-theoretic secure keys for a 100 Gb s–1 line speed data encryption system. We demonstrate long-term continuous operation of the quantum secured communication system using feedback controls to stabilize the qubit phase and propagation delay over metropolitan fibre lengths. These results mark an important milestone for the realistic deployment of quantum communications based on quantum photonic chips.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated QKD system comprising a QKD transmitter unit (Alice) interfaced with a QKD receiver unit (Bob) and local servers.
Fig. 2: QKD chips, modules and circuits.
Fig. 3: Real-time pattern generation from quantum random numbers.
Fig. 4: Performance and long-term stability.
Fig. 5: Applicability of the photonic integrated QKD system.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  2. Gottesman, D., Lo, H.-K., Lütkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. Quant. Inf. Comput. 5, 325–360 (2004).

    MathSciNet  MATH  Google Scholar 

  3. Koashi, M. Efficient quantum key distribution with practical sources and detectors. Preprint at http://arxiv.org/abs/quant-ph/0609180 (2006).

  4. Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 25002 (2020).

    Article  MathSciNet  Google Scholar 

  5. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  6. Qiu, J. Quantum communications leap out of the lab. Nature 508, 441–442 (2014).

    Article  ADS  Google Scholar 

  7. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  8. Sibson, P. et al. Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017).

    Article  ADS  Google Scholar 

  9. Sibson, P. et al. Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017).

    Article  ADS  Google Scholar 

  10. Geng, W. et al. Stable quantum key distribution using a silicon photonic transceiver. Opt. Express 27, 29045–29054 (2019).

    Article  ADS  Google Scholar 

  11. Paraïso, T. K. et al. A modulator-free quantum key distribution transmitter chip. npj Quantum Inf. 5, 1–6 (2019).

    Article  Google Scholar 

  12. Ma, C. et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016).

    Article  ADS  Google Scholar 

  13. Bunandar, D. et al. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 8, 21009 (2018).

    Google Scholar 

  14. Avesani, M. et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf. 7, 93. (2019).

  15. Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf 3, 25 (2017).

  16. Cao, L. et al. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Applied 14, 11001 (2020).

    Article  Google Scholar 

  17. Wei, K. et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 31030 (2020).

    Google Scholar 

  18. Semenenko, H. et al. Chip-based measurement-device-independent quantum key distribution. Optica 7, 238–242 (2020).

    Article  ADS  Google Scholar 

  19. Zhang, G. et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photon. 13, 839–842 (2019).

    Article  ADS  Google Scholar 

  20. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  ADS  Google Scholar 

  21. Roger, T. et al. Real-time interferometric quantum random number generation on chip. J. Opt. Soc. Am. B 36, B137 (2019).

    Article  Google Scholar 

  22. Abellan, C. et al. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016).

    Article  Google Scholar 

  23. Rudé, M. et al. Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources. Opt. Express 26, 31957–31964 (2018).

  24. Raffaelli, F. et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3, 25003 (2018).

    Article  Google Scholar 

  25. Raffaelli, F. et al. Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip. Opt. Express 26, 19730–19741 (2018).

    Article  ADS  Google Scholar 

  26. Comandar, L. C. et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett. 104, 21101 (2014).

    Article  Google Scholar 

  27. Lucamarini, M. et al. Efficient decoy-state quantum key distribution with quantified security. Opt. Express 21, 24550–24565 (2013).

    Article  ADS  Google Scholar 

  28. Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    Article  MathSciNet  Google Scholar 

  29. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  30. Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 57901 (2003).

    Article  ADS  Google Scholar 

  31. Yuan, Z. L. et al. Directly phase-modulated light source. Phys. Rev. X 6, 031044 (2016).

  32. Lo, H.-K. & Preskill, J. Security of quantum key distribution using weak coherent states with nonrandom phases. Quant. Inf. Comput. 8, 431–458 (2007).

    MathSciNet  MATH  Google Scholar 

  33. Roberts, G. L. et al. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution. Opt. Lett. 43, 5110–5113 (2018).

    Article  ADS  Google Scholar 

  34. Yoshino, K.-I. et al. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses. npj Quantum Inf 4, 8 (2018).

  35. Marangon, D. G. et al. Long-term test of a fast and compact quantum random number generator. J. Lightwave Technol. 36, 3778–3784 (2018).

    Article  ADS  Google Scholar 

  36. Yuan, Z. et al. 10-Mb/s quantum key distribution. J. Lightwave Technol. 36, 3427–3433 (2018).

    Article  ADS  Google Scholar 

  37. Dynes, J. F. et al. Cambridge quantum network. npj Quantum Inf. 5, 101 (2019).

  38. Tanizawa, Y., Takahashi, R., Sato, H. & Dixon, A. R. in ICUFN 2017. July 4 (Tue.)-July 7 (Fri.), 2017, Milan, Italy: the Ninth International Conference on Ubiquitous and Future Networks 880–886 (IEEE, 2017).

  39. Quantum Key Distribution (QKD); Protocol and Data Format of REST-based Key Delivery API GS QKD 014 v.1.1.1 (European Telecommunications Standards Institute, 2019).

  40. Ceccarelli, F. et al. Recent advances and future perspectives of single‐photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4, 2000102 (2021).

    Article  Google Scholar 

  41. Reithmaier, G. et al. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci Rep 3, 1–6 (2013).

  42. Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1–8 (2021).

    Article  Google Scholar 

  43. Beutel, F., Gehring, H., Wolff, M. A., Schuck, C. & Pernice, W. Detector-integrated on-chip QKD receiver for GHz clock rates. npj Quantum Inf 7, 40 (2021).

  44. Roeloffzen, C. G. H. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Select. Topics Quantum Electron. 24, 1–21 (2018).

    Article  Google Scholar 

  45. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

  46. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    Article  ADS  Google Scholar 

  47. Ogiso, Y. et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n–i–p–n heterostructure. J. Lightwave Technol. 35, 1450–1455 (2017).

    Article  ADS  Google Scholar 

  48. Yao, W. et al. Towards the integration of InP photonics with silicon electronics: design and technology challenges. J. Lightwave Technol. 39, 999–1009 (2021).

    Article  ADS  Google Scholar 

  49. Wang, D., Song, X., Zhou, L. & Zhao, Y. Real-time phase tracking scheme with mismatched-basis data for phase-coding quantum key distribution. IEEE Photon. J. 12, 1–7 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Lucamarini and P. R. Smith for fruitful discussions. This work has been funded by the Innovate UK project AQUASEC, as part of the UK National Quantum Technologies Programme. I.D.M. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 675662.

Author information

Authors and Affiliations

Authors

Contributions

T.K.P., T.R., M.S., D.G.M., Z.Y. and A.J.S. conceived the experiment. T.K.P., T.R., M.S and D.G.M. developed the photonic integrated modules. T.R., I.D.M. and T.K.P. characterized the photonic modules. D.G.M. characterized and optimized the QRNG units. M.S. and D.G.M. developed the QKD and QRNG control electronics. T.R. assembled the systems, developed the stabilization routines and acquired the long-term data. R.I.W and J.F.D. assisted with the installation of the data encryption systems. All authors contributed to the data analysis. T.K.P. wrote the manuscript with contributions from all authors. T.K.P., Z.Y. and A.J.S. supervised the project.

Corresponding author

Correspondence to Taofiq K. Paraïso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Feihu Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–6 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraïso, T.K., Roger, T., Marangon, D.G. et al. A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021). https://doi.org/10.1038/s41566-021-00873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00873-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing