Skip to main content
Log in

Joining Dissimilar Material Pairs by Mechanical Locking Method (MLM)

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Several methods that have been used in joining material pairs with different properties share many disadvantages. To overcome these disadvantages, the current study introduces mechanical locking method (MLM), which is a new and environmentally friendly method. This method can prevent many problems, especially those related to chemical incompatibility in practical applications. The method helps materials with physical and chemical incompatibilities join successfully. The only limitation in the joining process is that one of the materials must melt. When this criterion is met, ceramics can be joint with metals, ferrous-based materials can be joint with non-ferrous metals and other types of materials. This study used two different metal alloys, namely plain carbon steel and brass (CuZn30) for MLM as mold metal and reshaping metal, respectively. MLM process resulted in a successful joining for steel-brass alloys. Joint material pairs were examined using microstructural methods and mechanical properties. The study used the tensile test to evaluate the mechanical properties of joint metals, and used Vickers indentation for hardness measurement. The researcher conducted Scanning Electron Microscope (SEM) investigations for possible interface reactions and re-formed grain structures for both alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, L., Wang, J., & Zhou, J. (2019). Characterization and analysis on micro-hardness and microstructure evolution of brass subjected to laser shock peening. Optics & Laser Technology, 115, 325–330. https://doi.org/10.1016/j.optlastec.2019.02.043

    Article  Google Scholar 

  2. Sun, Y. F., Xu, N., & Fujii, H. (2014). The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. Material Science and Engineering: A, 589, 228–234. https://doi.org/10.1016/j.msea.2013.09.094

    Article  Google Scholar 

  3. Mohorana, B. R., Sahu, K. S., Sahoo, K. S., & Bathe, R. (2016). Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser. Engineering Science and Technology, an International Journal, 29(19), 2684–2690. https://doi.org/10.1016/j.jestch.2015.10.004

    Article  Google Scholar 

  4. Magnabosco, I., Ferro, P., Bonollo, F., & Arnberg, L. (2006). An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel. Material Science and Engineering: A, 424(1–2), 163–173.

    Article  Google Scholar 

  5. Mercan S. (2017). Mechanical locking method, Turkish Patent and Trademark Office. No: TR 2015 03256 B 2017/05/22.

  6. Mercan, S. (2019). Joining of dissimilar metal pairs by mechanical locking method. Gazi University Journal of Science Part C, 7(1), 25–36. https://doi.org/10.29109/gujsc.437488

    Article  Google Scholar 

  7. Avadhanam, S. K., Khadeer, S. A., Rajinikanth, V., Pahari, S., & Kumar, B. R. (2021). Evaluation of bond interface characteristics of rotary friction welded carbon steel to low alloy steel pipe joints. Materials Science and Engineering: A, 824, 141844. https://doi.org/10.1016/j.msea.2021.141844

    Article  Google Scholar 

  8. Yilbaş, B. S., Şahin, A. Z., Kahraman, N., & Al-Garni, A. Z. (1995). Friction Welding of St-Al and Al-Cu Materials. Journal of Materials Processing Techn., 49(3–4), 431–443. https://doi.org/10.1016/0924-0136(94)01349-6

    Article  Google Scholar 

  9. Mercan, S., Aydin, S., & Özdemir, N. (2015). Effect of welding parameters on the fatigue properties of dissimilar AISI 2205–AISI 1020 joined by friction welding. International Journal of Fatigue, 81, 78–90. https://doi.org/10.1016/j.ijfatigue.2015.07.023

    Article  Google Scholar 

  10. Mohammed, A., & M., Kulkarni, A., S., Sathiya P., Sunkulp, G. . (2015). The impact of heat input on the strength, toughness, microhardness, microstructure and corrosion aspects of friction welded duplexstainless steel joints. Journal of Manufacturing Processes, 18, 92–106. https://doi.org/10.1016/j.jmapro.2015.01.004

    Article  Google Scholar 

  11. Yan, F., Zhang, Y., Shen, J., Fu, X., & Mi, S. (2021). A new calculation method of viscoplastic heat production generated by plastic flow of friction stir welding process. Materials Chemistry and Physics, 270, 124795. https://doi.org/10.1016/j.matchemphys.2021.124795

    Article  Google Scholar 

  12. Huang, G., Feng, X., Shen, Y., Zheng, Q., & Zhao, P. (2016). Friction stir brazing of 6061 aluminum alloy and H62 brass: Evaluation of microstructure, mechanical and fracture behavior. Material & Design, 99, 403–411. https://doi.org/10.1016/j.matdes.2016.03.094

    Article  Google Scholar 

  13. Moghaddam, M. S., Parvizi, R., Haddad-Sabzevar, M., & Davoodi, A. (2011). Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: Influence of stir bands. Material & Design, 32(5), 2749–2755. https://doi.org/10.1016/j.matdes.2011.01.015

    Article  Google Scholar 

  14. Barlas, Z. (2017). Weldability of CuZn30 Brass/DP600 steel couple by friction stir spot welding. Acta Physica Polonica A, 132(3–11), 991–993. https://doi.org/10.12693/APhysPolA.132.991

    Article  Google Scholar 

  15. Barlas, Z. (2015). Effect of friction stir spot weld parameters on Cu/CuZn30 bimetal joints. The International Journal of Advanced Manufacturing Technology, 80(1), 161–170.

    Article  Google Scholar 

  16. Xiao, Y., Guo, C., & Guo, X. (2011). Constitutive modeling of hot deformation behavior of H62 brass. Material Science and Engineering: A, 528(21), 6510–6518.

    Article  Google Scholar 

  17. Başdemir, V., Baygut, A., & Çulha, O. (2018). Plastic forming technologies used in fastener manufacturing with cold forming technique. Journal of Advanced Technology Science, 7(3), 18–28.

    Google Scholar 

  18. Altınbalık, T., & Çan, Y. (2009). Influence of the die geometry on load and metal flow in extrusion-forging processes. Trakya University Journal of Natural Sciences, 10(1), 1–8.

    Google Scholar 

  19. Bressan, J. D., Martins, M. M., & Button, S. T. (2017). Analysis of metal extrusion by the finite volume method. Procedia Engineering, 207, 425–430. https://doi.org/10.1016/j.proeng.2017.10.799

    Article  Google Scholar 

  20. Luo, J., Xiang, J., Liu, D., Li, F., & Xue, K. (2012). Radial friction welding interface between brass and high carbon steel. Journal of Materials Processing Technology, 212(2), 385–392. https://doi.org/10.1016/j.jmatprotec.2011.10.001

    Article  Google Scholar 

  21. Balasubramaniana, M., Murali, S., Hemadri, C., & Kumar, R. (2021). A new method of dissimilar friction welding of titanium to stainless steel. Materialstoday Proceedings, 46(9), 3644–3647. https://doi.org/10.1016/j.matpr.2021.01.675

    Article  Google Scholar 

  22. Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A., & Nazari, E. (2012). Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Material & Design, 35, 330–334. https://doi.org/10.1016/j.matdes.2011.09.058

    Article  Google Scholar 

  23. Arık, H., Semerci, P., & Kırmızı, G. (2017). Investigation of wear behavior of aluminum matrix composite reinforced by Al2O3 and produced by hot pressing process. Gazi University Journal of Science Part C, 5(4), 87–97.

    Google Scholar 

  24. Ma, H., Qin, G., Dang, Z., & Geng, P. (2021). Interfacial microstructure and property of 6061 aluminium alloy/stainless steel hybrid inertia friction welded joint with different steel surface roughness. Materials Characterization, 179, 111347. https://doi.org/10.1016/j.matchar.2021.111347

    Article  Google Scholar 

  25. Erdem, M. (2015). Investigation of structure and mechanical properties of copper-brass plates joined by friction stir welding. The International Journal of Advanced Manufacturing Technology, 76(9–12), 1583–1592. https://doi.org/10.1007/s00170-014-6387-1

    Article  Google Scholar 

  26. Atasoy, E., & Kahraman, N. (2008). Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Material Characterization, 59(10), 1481–1490. https://doi.org/10.1016/j.matchar.2008.01.015

    Article  Google Scholar 

  27. Cheng, X., Bai, B., Gao, Y., Fu, H., & Xing, J. (2010). Microstructural characterization and properties of Al/Cu/steel diffusion bonded joints. Metals and Material International, 16(4), 649–655. https://doi.org/10.1007/s12540-010-0820-2

    Article  Google Scholar 

  28. Ren, C. X., Wang, Q., Zhang, Z. J., Yang, H. J., & Zhang, Z. F. (2019). Enhanced tensile and bending yield strengths of 304 stainless steel and H62 brass by surface spinning strengthening. Material Science and Engineering: A, 754, 593–601.

    Article  Google Scholar 

  29. Shen, J. J., Liu, H. J., & Cui, F. (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Material & Design, 31(8), 3937–3942. https://doi.org/10.1016/j.matdes.2010.03.027

    Article  Google Scholar 

  30. Robinson, J. S., & Redington, W. (2015). The influence of alloy composition on residual stresses in heat treated aluminium alloys. Material Characterization, 105, 47–55. https://doi.org/10.1016/j.matchar.2015.04.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Mercan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercan, S. Joining Dissimilar Material Pairs by Mechanical Locking Method (MLM). Int. J. Precis. Eng. Manuf. 22, 1975–1987 (2021). https://doi.org/10.1007/s12541-021-00593-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00593-z

Keywords

Navigation