Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome

Abstract

Germline DDX41 variants in myeloid neoplasms (MNs) are not uncommon, and we explored the prevalence and characterized the clinical and pathologic features in a cohort of 3132 unrelated adult MN patients. By targeted next-generation sequencing, we identified 28 patients (20 men and 8 women) with pathogenic germline DDX41 variants who developed acute myeloid leukemia (AML), in which only 3 (11%) had a family history (FH) of MNs. A subacute clinical course of cytopenia (mean duration of 11.2 months, range 0–72 months) prior to the initial AML diagnosis was accompanied by a low blast count (median at 30%, range 20–70%) in hypocellular marrows (93% of all patients), in vast contrast to the typical proliferative subtypes of AML in the elderly. Most patients had a normal karyotype (75%) and acquired a second DDX41 variant (69%). A favorable overall survival (OS) was observed in comparison to that of common subtypes of AML with wild-type DDX41 in age-matched patients. Our study demonstrated that the frequent germline pathogenic DDX41 variants characterized a clinically distinct AML entity. Features characteristic of DDX41-mutated AML include male predominance, often lack of FH, indolent course, low proliferative potential, frequent somatic DDX41 variants, and a favorable OS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the study.
Fig. 2: Epidemiologic characteristics, blast counts, and bone marrow cellularity at initial the diagnosis of AML patients with mutant DDX41.
Fig. 3: Pathologic characteristics of bone marrow aspirates and biopsies from DDX41-mutant AML patients.
Fig. 4: Integrated molecular and cytogenetic characteristics of the 28 DDX41-mutant AML patients.
Fig. 5: Treatment response and overall survival (OS) of 28 DDX41-mutant AML patients.

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133:1071–85. https://doi.org/10.1182/blood-2018-10-844662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11:1044. https://doi.org/10.1038/s41467-020-14829-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sebert M, Passet M, Raimbault A, Rahme R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–4. https://doi.org/10.1182/blood.2019000909.

    Article  PubMed  Google Scholar 

  5. Tawana K, Drazer MW, Churpek JE. Universal genetic testing for inherited susceptibility in children and adults with myelodysplastic syndrome and acute myeloid leukemia: are we there yet? Leukemia. 2018;32:1482–92. https://doi.org/10.1038/s41375-018-0051-y.

    Article  PubMed  Google Scholar 

  6. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70. https://doi.org/10.1016/j.ccell.2015.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cardoso SR, Ryan G, Walne AJ, Ellison A, Lowe R, Tummala H, et al. Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia. 2016;30:2083–6. https://doi.org/10.1038/leu.2016.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheah JJC, Hahn CN, Hiwase DK, Scott HS, Brown AL. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol. 2017;106:163–74. https://doi.org/10.1007/s12185-017-2260-y.

    Article  CAS  PubMed  Google Scholar 

  9. Quesada AE, Routbort MJ, DiNardo CD, Bueso-Ramos CE, Kanagal-Shamanna R, Khoury JD, et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019;94:757–66. https://doi.org/10.1002/ajh.25486.

    Article  CAS  PubMed  Google Scholar 

  10. Qu S, Li B, Qin T, Xu Z, Pan L, Hu N, et al. Molecular and clinical features of myeloid neoplasms with somatic DDX41 mutations. Br J Haematol. 2021;192:1006–10. https://doi.org/10.1111/bjh.16668.

  11. Choi EJ, Cho YU, Hur EH, Jang S, Kim N, Park HS, et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia. Haematologica. 2021. https://doi.org/10.3324/haematol.2020.270553.

  12. Baliakas P, Tesi B, Wartiovaara-Kautto U, Stray-Pedersen A, Friis LS, Dybedal I, et al. Nordic guidelines for germline predisposition to myeloid neoplasms in adults: recommendations for genetic diagnosis, clinical management and follow-up. Hemasphere. 2019;3:e321. https://doi.org/10.1097/HS9.0000000000000321.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berger G, van den Berg E, Sikkema-Raddatz B, Abbott KM, Sinke RJ, Bungener LB, et al. Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation. Leukemia. 2017;31:520–2. https://doi.org/10.1038/leu.2016.310.

    Article  CAS  PubMed  Google Scholar 

  14. Li PB, Williams M, Zeng G, Lei L, White T, Xie W, et al. Genetic landscape and disease spectrum of hematologic neoplasms with germline DDX41 variants. 2021.

  15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. D’Agostino M, Zaccaria GM, Ziccheddu B, Rustad EH, Genuardi E, Capra A, et al. Early relapse risk in patients with newly diagnosed multiple myeloma characterized by next-generation sequencing. Clin Cancer Res. 2020;26:4832–41. https://doi.org/10.1158/1078-0432.CCR-20-0951.

    Article  PubMed  Google Scholar 

  17. Shah V, Johnson DC, Sherborne AL, Ellis S, Aldridge FM, Howard-Reeves J, et al. Subclonal TP53 copy number is associated with prognosis in multiple myeloma. Blood. 2018;132:2465–9. https://doi.org/10.1182/blood-2018-06-857250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corre J, Cleynen A, Robiou du Pont S, Buisson L, Bolli N, Attal M, et al. Multiple myeloma clonal evolution in homogeneously treated patients. Leukemia. 2018;32:2636–47. https://doi.org/10.1038/s41375-018-0153-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kortum KM, Mai EK, Hanafiah NH, Shi CX, Zhu YX, Bruins L, et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood. 2016;128:1226–33. https://doi.org/10.1182/blood-2016-02-698092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Juliusson G, Jadersten M, Deneberg S, Lehmann S, Mollgard L, Wennstrom L, et al. The prognostic impact of FLT3-ITD and NPM1 mutation in adult AML is age-dependent in the population-based setting. Blood Adv. 2020;4:1094–101. https://doi.org/10.1182/bloodadvances.2019001335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakaguchi M, Yamaguchi H, Najima Y, Usuki K, Ueki T, Oh I, et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018;2:2744–54. https://doi.org/10.1182/bloodadvances.2018020305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schnittger S, Bacher U, Kern W, Alpermann T, Haferlach C, Haferlach T. Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia. 2011;25:1297–304. https://doi.org/10.1038/leu.2011.97.

    Article  CAS  PubMed  Google Scholar 

  23. Lewinsohn M, Brown AL, Weinel LM, Phung C, Rafidi G, Lee MK, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127:1017–23. https://doi.org/10.1182/blood-2015-10-676098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vairo FPE, Ferrer A, Cathcart-Rake E, King RL, Howard MT, Viswanatha DS, et al. Novel germline missense DDX41 variant in a patient with an adult-onset myeloid neoplasm with excess blasts without dysplasia. Leuk Lymphoma. 2019;60:1337–9. https://doi.org/10.1080/10428194.2018.1522443.

    Article  PubMed  Google Scholar 

  25. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19:4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mendez-Ferrer S, Garcia-Fernandez M, de Castillejo CL. Convert and conquer: the strategy of chronic myelogenous leukemic cells. Cancer Cell. 2015;27:611–3. https://doi.org/10.1016/j.ccell.2015.04.012.

    Article  CAS  PubMed  Google Scholar 

  27. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  Google Scholar 

  28. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patkar N, Kakirde C, Shaikh AF, Salve R, Bhanshe P, Chatterjee G, et al. Clinical impact of panel-based error-corrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia. 2021;35:1392–404. https://doi.org/10.1038/s41375-021-01131-6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maciejewski JP, Padgett RA, Brown AL, Muller-Tidow C. DDX41-related myeloid neoplasia. Semin Hematol. 2017;54:94–97. https://doi.org/10.1053/j.seminhematol.2017.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Polprasert C, Takeda J, Niparuck P, Rattanathammethee T, Pirunsarn A, Suksusut A, et al. Novel DDX41 variants in Thai patients with myeloid neoplasms. Int J Hematol. 2020;111:241–6. https://doi.org/10.1007/s12185-019-02770-3.

    Article  CAS  PubMed  Google Scholar 

  32. Sanders MA. Lifting the veil on germline DDX41 mutations. Blood. 2019;134:1368–70. https://doi.org/10.1182/blood.2019002982.

    Article  CAS  PubMed  Google Scholar 

  33. Varga RE, Schule R, Fadel H, Valenzuela I, Speziani F, Gonzalez M, et al. Do not trust the pedigree: reduced and sex-dependent penetrance at a novel mutation hotspot in ATL1 blurs autosomal dominant inheritance of spastic paraplegia. Hum Mutat. 2013;34:860–3. https://doi.org/10.1002/humu.22309.

    Article  CAS  PubMed  Google Scholar 

  34. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132:1077–130. https://doi.org/10.1007/s00439-013-1331-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Mulla F, Bland JM, Serratt D, Miller J, Chu C, Taylor GT. Age-dependent penetrance of different germline mutations in the BRCA1 gene. J Clin Pathol. 2009;62:350–6. https://doi.org/10.1136/jcp.2008.062646.

    Article  CAS  PubMed  Google Scholar 

  36. van Rijsingen IA, Nannenberg EA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur J Heart Fail. 2013;15:376–84. https://doi.org/10.1093/eurjhf/hfs191.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PL designed the study and drafted the manuscript. TW, WX, WC, DP, GZ, H-YW, MW, and SB collected patients’ clinical and family history, morphologic, cytogenetic, and molecular data. JV and TK examined patients and performed DDX41 germline testing. PL, TW, WX, WC, DP, GZ, H-YW, and SB interpreted and classified all variants by NGS testing. PL, MW, and JLP reviewed the bone marrow examination. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Peng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., White, T., Xie, W. et al. AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. Leukemia 36, 664–674 (2022). https://doi.org/10.1038/s41375-021-01404-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01404-0

This article is cited by

Search

Quick links