Skip to main content
Log in

Generation of Density Matrices for Two Qubits Using Coherent and Incoherent Controls

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we consider a pair of qubits controlled by coherent and incoherent controls. The dynamics of the two-qubit system is driven by a Gorini–Kossakowsky–Sudarchhan–Lindblad master equation where coherent control enters into the Hamiltonian and incoherent control inters into both the Hamiltonian (via Lamb shift) and the dissipative superoperator. Two classes of interaction between the system and the coherent field are considered. For this system, we analyze the control problem of generating a given target density matrix which is formulated as minimizing the Hilbert–Schmidt distance between the final density matrix and the target density matrix. Incoherent control is modeled as a sum of constant in time Gaussians with centers related with the transitions frequencies between the energy levels of the qubits. Coherent control in general formulation is considered as measurable function and in numerical experiments as piecewise constant function with constraints on magnitudes and variations. Finite-dimensional numerical optimization is performed using the dual annealing method; the corresponding results are described for some initial and target density matrices and for some set of the parameters of the control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. D. J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective (Univ. Science Books, Sausilito, CA, 2007). https://www.uscibooks.com/tannor.htm.

    Google Scholar 

  2. C. Brif, R. Chakrabarti, and H. Rabitz, ‘‘Control of quantum phenomena: Past, present and future,’’ New J. Phys. 12, 075008 (2010). https://doi.org/10.1088/1367-2630/12/7/075008

    Article  MATH  Google Scholar 

  3. K. W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V. J. Beltrani, and H. Rabitz, ‘‘Why is chemical synthesis and property optimization easier than expected?,’’ Phys. Chem. Chem. Phys. 13, 10048–10070 (2011). https://doi.org/10.1039/C1CP20353C

    Article  Google Scholar 

  4. C. Altafini and F. Ticozzi, ‘‘Modeling and control of quantum systems: An introduction,’’ IEEE Trans. Autom. Control 57, 1898–1917 (2012). https://doi.org/10.1109/TAC.2012.2195830

    Article  MathSciNet  MATH  Google Scholar 

  5. S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, ‘‘Training Schrödinger’s cat: Quantum optimal control. Strategic report on current status, visions and goals for research in Europe,’’ Eur. Phys. J. D 69 (12), 279 (2015). https://doi.org/10.1140/epjd/e2015-60464-1

    Article  Google Scholar 

  6. C. P. Koch, ‘‘Controlling open quantum systems: Tools, achievements, and limitations,’’ J. Phys.: Condens. Matter 28, 213001 (2016). https://doi.org/10.1088/0953-8984/28/21/213001

    Article  Google Scholar 

  7. D. D’Alessandro, Introduction to Quantum Control and Dynamics, 2nd ed. (Chapman and Hall/CRC, Boca Raton, 2021).

    Book  Google Scholar 

  8. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).

    Google Scholar 

  9. M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, Weinheim, 2012).

    MATH  Google Scholar 

  10. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, ‘‘Femtosecond quantum control of molecular dynamics in the condensed phase,’’ Phys. Chem. Chem. Phys. 9, 2470–2497 (2007). https://doi.org/10.1039/B618760A

    Article  Google Scholar 

  11. K. Lyakhov, H.-J. Lee, and A. Pechen, ‘‘Some features of Boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator,’’ IEEE J. Quantum Electron. 52, 1400208 (2016). https://doi.org/10.1109/JQE.2016.2623273

    Article  Google Scholar 

  12. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, ‘‘Some issues of industrial scale boron Isotopes Separation by the Laser Assisted Retarded Condensation (SILARC) method,’’ Separ. Purif. Technol. 176, 402–411 (2017). https://doi.org/10.1016/j.seppur.2016.12.021

    Article  Google Scholar 

  13. K. A. Lyakhov and A. N. Pechen, ‘‘\({\textrm{CO}}_{2}\) laser system design for efficient boron isotope separation by the method of selective laser-assisted retardation of condensation,’’ Appl. Phys. B 126, 141 (2020). https://doi.org/10.1007/s00340-020-07445-0

    Article  Google Scholar 

  14. K. A. Lyakhov and A. N. Pechen, ‘‘Evolution of the cold trap content enrichment factor for a specific iterative scheme of zirconium isotopes separation,’’ Lobachevskii J. Math. 41, 2342–2352 (2020). https://doi.org/10.1134/S1995080220120252

    Article  Google Scholar 

  15. L. Wang and D. Babikov, ‘‘Adiabatic coherent control in the anharmonic ion trap: Proposal for the vibrational two-qubit system,’’ Phys. Rev. A 83, 052319 (2011). https://doi.org/10.1103/PhysRevA.83.052319

    Article  Google Scholar 

  16. M. Rafiee, A. Nourmandipour, and S. Mancini, ‘‘Optimal feedback control of two-qubit entanglement in dissipative environments,’’ Phys. Rev. A 94, 012310 (2016). https://doi.org/10.1103/PhysRevA.94.012310

    Article  Google Scholar 

  17. J. L. Allen, R. Kosut, J. Joo, P. Leek, and E. Ginossar, ‘‘Optimal control of two qubits via a single cavity drive in circuit quantum electrodynamics,’’ Phys. Rev. A 95, 042325 (2017). https://doi.org/10.1103/PhysRevA.95.042325

    Article  Google Scholar 

  18. J. Hu, Q. Ke, and Y. Ji, ‘‘Steering quantum dynamics of a two-qubit system via optimal bang-bang control,’’ Int. J. Theor. Phys. 57, 1486–1497 (2018). https://doi.org/10.1007/s10773-018-3676-8

    Article  MATH  Google Scholar 

  19. M. Bukov, A. G. R. Day, P. Weinberg, A. Polkovnikov, P. Mehta, and D. Sels, ‘‘Broken symmetry in a two-qubit quantum control landscape,’’ Phys. Rev. A 97, 052114 (2018). https://doi.org/10.1103/PhysRevA.97.052114

    Article  Google Scholar 

  20. G. Feng, F. H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh, and R. Laflamme, ‘‘Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system,’’ Phys. Rev. A 98, 052341 (2018). https://doi.org/10.1103/PhysRevA.98.052341

    Article  Google Scholar 

  21. A. Pechen and H. Rabitz, ‘‘Teaching the environment to control quantum systems,’’ Phys. Rev. A 73, 062102 (2006). https://doi.org/10.1103/PhysRevA.73.062102

    Article  Google Scholar 

  22. A. Pechen, N. Il’in, F. Shuang, and H. Rabitz, ‘‘Quantum control by von Neumann measurements,’’ Phys. Rev. A 74, 052102 (2006). https://doi.org/10.1103/PhysRevA.74.052102

    Article  Google Scholar 

  23. F. Shuang, A. Pechen, T.-S. Ho, and H. Rabitz, ‘‘Observation-assisted optimal control of quantum dynamics,’’ J. Chem. Phys. 126, 134303 (2007). https://doi.org/10.1063/1.2711806

    Article  Google Scholar 

  24. F. Shuang, M. Zhou, A. Pechen, R. Wu, O. M. Shir, and H. Rabitz, ‘‘Control of quantum dynamics by optimized measurements,’’ Phys. Rev. A 78, 063422 (2008). https://doi.org/10.1103/PhysRevA.78.063422

    Article  Google Scholar 

  25. A. Pechen and A. Trushechkin, ‘‘Measurement-assisted Landau-Zener transitions,’’ Phys. Rev. A 91, 052316 (2015). https://doi.org/10.1103/PhysRevA.91.052316

    Article  Google Scholar 

  26. N. B. Il’in and A. N. Pechen, ‘‘Critical point in the problem of maximizing the transition probability using measurements in an \(n\)-level quantum system,’’ Theor. Math. Phys. 194, 384–389 (2018). https://doi.org/10.1134/S0040577918030066

    Article  MATH  Google Scholar 

  27. M. Cattaneo and G.-S. Paraoanu, ‘‘Engineering dissipation with resistive elements in circuit quantum electrodynamics,’’ arXiv: 2103.16946.

  28. M. Rademacher, M. Konopik, M. Debiossac, D. Grass, E. Lutz, and N. Kiesel, ‘‘Nonequilibrium control of thermal and mechanical changes in a levitated system,’’ arXiv: 2103.10898.

  29. A. Pechen, ‘‘Engineering arbitrary pure and mixed quantum states,’’ Phys. Rev. A 84, 042106 (2011). https://doi.org/10.1103/PhysRevA.84.042106

    Article  Google Scholar 

  30. R. Wu, A. Pechen, C. Brif, and H. Rabitz, ‘‘Controllability of open quantum systems with Kraus-map dynamics,’’ J. Phys. A: Math. Theor. 40, 5681–5693 (2007). https://doi.org/10.1088/1751-8113/40/21/015

    Article  MathSciNet  MATH  Google Scholar 

  31. O. V. Morzhin and A. N. Pechen, ‘‘Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls,’’ Int. J. Theor. Phys. 60, 576–584 (2021). https://doi.org/10.1007/s10773-019-04149-w

    Article  MathSciNet  Google Scholar 

  32. O. V. Morzhin and A. N. Pechen, ‘‘Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls,’’ Lobachevskii J. Math. 40, 1532–1548 (2019). https://doi.org/10.1134/S1995080219100202

    Article  MathSciNet  MATH  Google Scholar 

  33. O. V. Morzhin and A. N. Pechen, ‘‘Maximization of the Uhlmann–Jozsa fidelity for an open two-level quantum system with coherent and incoherent controls,’’ Phys. Part. Nucl. 51, 464–469 (2020). https://doi.org/10.1134/S1063779620040516

    Article  Google Scholar 

  34. O. V. Morzhin and A. N. Pechen, ‘‘Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system,’’ Lobachevskii J. Math. 41, 2353–2369 (2020). https://doi.org/10.1134/S199508022012029X

    Article  MathSciNet  MATH  Google Scholar 

  35. O. V. Morzhin and A. N. Pechen, ‘‘On reachable and controllability sets for time-minimal control of an open two-level quantum system,’’ Proc. Steklov Inst. Math. 313, 149–164 (2021). https://doi.org/10.1134/S0081543821020152

    Article  MATH  Google Scholar 

  36. O. V. Morzhin and A. N. Pechen, ‘‘Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls,’’ AIP Conf. Proc. 2362, 060003 (2021). https://doi.org/10.1063/5.0055004; arXiv: 2106.10146

  37. L. Lokutsievskiy and A. Pechen, ‘‘Reachable sets for two-level open quantum systems driven by coherent and incoherent controls’’ (submitted).

  38. Dual Annealing Optimization in SciPy. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html.

  39. C. Tsallis and D. A. Stariolo, ‘‘Generalized simulated annealing,’’ Phys. A (Amsterdam, Neth.) 233, 395–406 (1996). https://doi.org/10.1016/S0378-4371(96)00271-3

  40. Y. Xiang and X. G. Gong, ‘‘Efficiency of generalized simulated annealing,’’ Phys. Rev. E 62, 4473–4476 (2000). https://doi.org/10.1103/PhysRevE.62.4473

    Article  Google Scholar 

  41. Solve an Initial Value Problem for a System of ODEs. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html.

  42. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems (Springer, Berlin, 1996).

    MATH  Google Scholar 

Download references

Funding

This work is performed within the State Program of the Ministry of Science and Higher Education of the Russian Federation (project no. 0718-2020-0025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Morzhin or A. N. Pechen.

Ethics declarations

O. V. Morzhin http://www.mathnet.ru/eng/person30382; A. N. Pechen is a corresponding author, http://www.mathnet.ru/eng/person17991.

Additional information

(Submitted by E. A. Turilova)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morzhin, O.V., Pechen, A.N. Generation of Density Matrices for Two Qubits Using Coherent and Incoherent Controls. Lobachevskii J Math 42, 2401–2412 (2021). https://doi.org/10.1134/S1995080221100176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100176

Keywords:

Navigation