Skip to main content
Log in

Characterization and Uniqueness of Gibbs Processes by Means of Kirkwood–Salsburg Equations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using an idea of Minlos we characterize Gibbs processes by the property that a modified correlation function satisfies the first Kirkwood–Salsburg equation. The same idea used in a different context then yields a criterion for uniqueness of Gibbs processes in terms of the full Kirkwood–Salsburg equations. The results are illustrated by interacting hard-core cluster processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Which had been introduced in [2, 5, 6].

REFERENCES

  1. V. A. Malyshev and R. A. Minlos, Gibbs Random Fields (Kluwer Academic, Dordrecht, 1991).

    Book  Google Scholar 

  2. K. Matthes, W. Warmuth, and J. Mecke, ‘‘Bemerkungen zu einer Arbeit von Nguyen Xuan Xanh und Hans Zessin,’’ Math. Nachr. 88, 117–127 (1979).

    Article  MathSciNet  Google Scholar 

  3. J. Mecke, Random Measures. Classical Lectures (Walter Warmuth, Germany, 2011).

    MATH  Google Scholar 

  4. R. A. Minlos and S. Poghosyan, ‘‘Estimates of Ursell functions, group functions, and their derivatives,’’ Theor. Math. Phys. 31, 1–62 (1980).

    Google Scholar 

  5. X. X. Nguyen and H. Zessin, ‘‘Integral and differential characterizations of the Gibbs process,’’ Math. Nachr. 88, 105–115 (1979).

    Article  MathSciNet  Google Scholar 

  6. F. Papangelou, ‘‘Point processes on spaces of flats and other homogeneous spaces,’’ Math. Proc. Cambridge Phil. Soc. 80, 297–314 (1976).

    Article  MathSciNet  Google Scholar 

  7. S. Poghosyan and H. Zessin, ‘‘Cluster representation of classical and quantum processes,’’ Mosc. Math. J. 19, 1–19 (2019).

    MathSciNet  MATH  Google Scholar 

  8. S. Poghosyan and H. Zessin, ‘‘Penrose-stable interactions in classical statistical mechanics,’’ Ann. Henri Poincaré (2020). https://www.math.uni-potsdam.de/fileadmin/user-upload/Prof-Wahr/Gaeste/PoghosyanZessin.pdf.

  9. D. Ruelle, Statistical Mechanics (W. A. Benjamin, MA, 1969).

    MATH  Google Scholar 

  10. D. Ruelle, ‘‘Superstable interactions in classical statistical mechanics,’’ Commun. Math. Phys. 18, 127–159 (1970).

    Article  MathSciNet  Google Scholar 

  11. Y. Takahashi, ‘‘Random point fields revisited: Fock space associated with Poisson measures, fermion (determinantal) processes and Gibbs measures,’’ Preprint RIMS-1681 (Kyoto Univ., 2009).

    Google Scholar 

  12. A. Giovannini and L. Van Hove, ‘‘Negative binomial distributions in high energy hadron collisions,’’ Cern-Th.4230/85 (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Poghosyan or H. Zessin.

Additional information

(Submitted by S. A. Grigoryan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poghosyan, S., Zessin, H. Characterization and Uniqueness of Gibbs Processes by Means of Kirkwood–Salsburg Equations. Lobachevskii J Math 42, 2427–2436 (2021). https://doi.org/10.1134/S199508022110019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022110019X

Keywords:

Navigation