Skip to main content
Log in

Operator Approach to Weak Convergence of Measures and Limit Theorems for Random Operators

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The generalized weak convergence of a sequence of measures is induced by the convergence of the linear operators generated by the measures. A corresponding generalization of the notion of convergence over a distribution is introduced. Generalized convergence over the distribution of a sequence of compositions of independent random transformations is investigated. The connection between limit distributions and semigroups that solve initial-boundary value problems for evolution equations is established. In the case of a sequence of compositions of independent random transformations of the shift to a random vector of Euclidean space, the results obtained coincide with the central limit theorem for sums of independent random vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F. A. Berezin, ‘‘Non-Wiener functional integrals,’’ Theor. Math. Phys. 6, 141–155 (1971).

    Article  Google Scholar 

  2. V. I. Bogachev, Weak Convergence of Measures (AMS, Providence, 2018).

    Book  Google Scholar 

  3. V. I. Bogachev, N. V. Krylov, and M. Rockner, ‘‘Elliptic and parabolic equations for measures,’’ Usp. Mat. Nauk 64 (6), 5–116 (2009).

    Article  MathSciNet  Google Scholar 

  4. V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis (Springer Nature, Switzerland, 2020).

    Book  Google Scholar 

  5. A. V. Bulinskii and M. E. Shirokov, ‘‘On quantum channels and operations preserving finiteness of the von Neumann entropy,’’ Lobachevskii J. Math. 41, 2383–2396 (2020).

    Article  MathSciNet  Google Scholar 

  6. Ya. A. Butko, ‘‘Chernoff approximation of subordinate semigroups,’’ Stochast. Dynam. 18, 1850021 (2018). https://doi.org/10.1142/S0219493718500211

    Article  MathSciNet  MATH  Google Scholar 

  7. P. R. Chernoff, ‘‘Note on product formulas for operator semigroups,’’ J. Funct. Anal. 2, 238–242 (1968).

    Article  MathSciNet  Google Scholar 

  8. E. B. Dynkin, Markov Processes (Fizmatgiz, Moscow, 1963) [in Russian].

    MATH  Google Scholar 

  9. W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1971), Vol. 2.

    MATH  Google Scholar 

  10. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Stochastic Processes (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  11. J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Random quantization of Hamiltonian sestems,’’ Dokl. Math. 498, 122–126 (2021).

    Article  Google Scholar 

  12. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995).

    Book  Google Scholar 

  13. Yu. N. Orlov, ‘‘Evolution equation for Wigner function for linear quantization,’’ KIAM Preprint, No. 040 (Keldysh Inst. Appl. Math., Moscow, 2020), p. 22.

    Google Scholar 

  14. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Feynman formulas as a method of averaging random Hamiltonians,’’ Proc. Steklov Inst. Math. 285, 222–232 (2014).

    Article  MathSciNet  Google Scholar 

  15. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Unbounded random operators and Feynman formulae,’’ Izv. Math. 80, 1131–1158 (2016).

    Article  MathSciNet  Google Scholar 

  16. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Feynman formulas for nonlinear evolution equations,’’ Dokl. Math. 96, 574–577 (2017).

    Article  MathSciNet  Google Scholar 

  17. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Feynman formulas and the law of large numbers for random one-parameter semigroups,’’ Proc. Steklov Inst. Math. 306, 196–211 (2019).

    Article  MathSciNet  Google Scholar 

  18. V. I. Oseledets, ‘‘Markov chains, skew products and ergodic theorems for ’general’ dynamic systems,’’ Theory Probab. Appl. 10, 499–504 (1965).

    Article  MathSciNet  Google Scholar 

  19. I. D. Remizov, ‘‘Solution-giving formula to Cauchy problem for multidimensional parabolic equation with variable coefficients,’’ J. Math. Phys. 60, 071505 (2019).

    Article  MathSciNet  Google Scholar 

  20. V. Zh. Sakbaev and O. G. Smolyanov, ‘‘Feynman calculus for random operator-valued functions and their applications,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 160, 373–383 (2018).

    Google Scholar 

  21. V. Zh. Sakbaev and I. V. Volovich, ‘‘Self-adjoint approximations of the degenerate Schrodinger operator,’’ P-adic Anal., Numbers, Ultrametr. Anal. Appl. 9, 39–52 (2017).

    MATH  Google Scholar 

  22. V. Zh. Sakbaev, ‘‘On the law of large numbers for compositions of independent random semigroups,’’ Russ. Math. 60 (10), 72–76 (2016).

    Article  MathSciNet  Google Scholar 

  23. V. Zh. Sakbaev, ‘‘Averaging of random flows of linear and nonlinear maps,’’ J. Phys.: Conf. Ser. 990, 012012 (2018).

    MathSciNet  Google Scholar 

  24. V. Zh. Sakbaev, O. G. Smolyanov, and N. N. Shamarov, ‘‘Non-gaussian lagrangian Feynman–Kac formulas,’’ Dokl. Math. 90, 416–418 (2014).

    Article  MathSciNet  Google Scholar 

  25. V. Zh. Sakbaev and N. V. Tsoy, ‘‘Analogue of Chernoff theorem for cylindrical pseudomeasures,’’ Lobachevskii J. Math. 41 (12), 2369–2382 (2020).

    Article  MathSciNet  Google Scholar 

  26. A. V. Skorokhod, ‘‘Products of independent random operators,’’ Russ. Math. Surv. 38, 291–318 (1983).

    Article  MathSciNet  Google Scholar 

  27. O. G. Smolyanov and S. V. Fomin, ‘‘Measures on linear topological spaces,’’ Russ. Math. Surv. 31 (4), 1–53 (1976).

    Article  Google Scholar 

  28. V. N. Tutubalin, ‘‘A local limit theorem for products of random matrices,’’ Theory Probab. Appl. 22, 203–214 (1978).

    Article  MathSciNet  Google Scholar 

  29. A. D. Venttsel, ‘‘On boundary conditions for multidimensional diffusion processes,’’ Theory Probab. Appl. 4, 164–177 (1959).

    Article  Google Scholar 

  30. A. D. Venttsel, Course of Theory of Random Prosesses (Fizmatlit, Moscow, 1996) [in Russian].

    Google Scholar 

  31. I. V. Volovich and V. Zh. Sakbaev, ‘‘On quantum dynamics on \(C^{*}\)-algebras,’’ Proc. Steklov Inst. Math. 301 25–38 (2018).

    Article  MathSciNet  Google Scholar 

  32. I. V. Volovich, ‘‘Bogoliubov equations and functional mechanics,’’ Theor. Math. Phys. 164, 1128–1135 (2010).

    Article  Google Scholar 

  33. I. V. Volovich and V. Zh. Sakbaev, ‘‘Universal boundary value problem for equations of mathematical physics,’’ Proc. Steklov Inst. Math. 285, 56–80 (2014).

    Article  MathSciNet  Google Scholar 

  34. K. Yu. Zamana, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Stochastic processes on the group of orthogonal matrices and evolution equations describing them,’’ Comput. Math. Math. Phys. 60, 1686–1700 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Orlov, V. Zh. Sakbaev or E. V. Shmidt.

Additional information

(Submitted by G. G. Amosov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, Y.N., Sakbaev, V.Z. & Shmidt, E.V. Operator Approach to Weak Convergence of Measures and Limit Theorems for Random Operators. Lobachevskii J Math 42, 2413–2426 (2021). https://doi.org/10.1134/S1995080221100188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100188

Keywords:

Navigation