Skip to main content
Log in

On Independence of Events in Noncommutative Probability Theory

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a tracial state \(\varphi\) on a von Neumann algebra \(\mathcal{A}\) and assume that projections \(P,Q\) of \(\mathcal{A}\) are independent if \(\varphi(PQ)=\varphi(P)\varphi(Q)\). First we present the general criterion of a projection pair independence. We then give a geometric criterion for independence of different pairs of projections. If atoms \(P\) and \(Q\) are independent then \(\varphi(P)=\varphi(Q)\). Also here we deal with an analog of a ‘‘symmetric difference’’ for a pair of projections \(P\) and \(Q\), namely, the projection \(R\equiv P\vee Q-P\wedge Q\). If \(R\neq 0,I\), the pairs \(\{P,R\}\) and \(\{Q,R\}\) are independent then \(\varphi(P)=\varphi(Q)=1/2\) and \(\varphi(P\wedge Q+P\vee Q)=1\). If, moreover, \(P\) and \(Q\) are independent, then \(\varphi(P\wedge Q)\leq 1/4\) and \(\varphi(P\vee Q)\geq 3/4\). For an atomless von Neumann algebra \(\mathcal{A}\) a tracial normal state is determined by its specification of independent events. We clarify our considerations with examples of projection pairs with the differemt mutual independency relations. For the full matrix algebra we give several equivalent conditions for the independence of pairs of projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. C. Gootman and D. Kannan, ‘‘Zero-one laws in finite \(W^{*}\)-algebras,’’ J. Math. Anal. Appl. 55, 743–756 (1976).

    Article  MathSciNet  Google Scholar 

  2. A. Bikchentaev, M. Navara, and R. Yakushev, ‘‘Quantum logics of idempotents of unital rings,’’ Int. J. Theor. Phys. 54, 1987–2000 (2015).

    Article  MathSciNet  Google Scholar 

  3. N. V. Quang and N. D. Tien, ‘‘The strong law of large numbers for \(d\)-dimensional arrays in von Neumann algebras,’’ Theory Prob. Appl. 41, 569–578 (1997).

    MATH  Google Scholar 

  4. N. V. Quang, D. T. Son, and L. H. Son, ‘‘The strong laws of large numbers for positive measurable operators and applications,’’ Stat. Prob. Lett. 124, 110–120 (2017).

    Article  MathSciNet  Google Scholar 

  5. A. Łuczak, ‘‘Laws of large numbers in von Neumann algebras and related results,’’ Studia Math. 81, 231–243 (1985).

  6. B. J. Choi and U. C. Ji, ‘‘Convergence rates for weighted sums in noncommutative probability space,’’ J. Math. Anal. Appl. 409, 963–972 (2014).

    Article  MathSciNet  Google Scholar 

  7. J. Hamhalter, ‘‘\(C^{*}\)-independence and \(W^{*}\)-independence of von Neumann algebras,’’ Math. Nachr. 239–240, 146–156 (2002).

    Article  MathSciNet  Google Scholar 

  8. J. Hamhalter and S. Jin, ‘‘Operational independence and tensor products of \({\textrm{C}}^{*}\)-algebras,’’ J. Math. Phys. 58 (3) (2017).

  9. I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Vol. 18 of Transl. Mathem. Monographs (Am. Math. Soc., Providence, RI, 1969).

  10. V. Chilin, A. Krygin, and F. Sukochev, ‘‘Extreme points of convex fully symmetric sets of measurable operators,’’ Integr. Equat. Oper. Theory 15, 186–226 (1992).

    Article  MathSciNet  Google Scholar 

  11. A. M. Bikchentaev, ‘‘A block projection operator in normed ideal spaces of measurable operators,’’ Russ. Math. (Iz. VUZ) 56 (2), 75–79 (2012).

  12. A. M. Bikchentaev and F. Sukochev, ‘‘Inequalities for the block projection operators,’’ J. Funct. Anal. 280, 108851 (2021).

    Article  MathSciNet  Google Scholar 

  13. P. R. Halmos, ‘‘Two subspaces,’’ Trans. Am. Math. Soc. 144, 381–389 (1969).

    Article  MathSciNet  Google Scholar 

  14. A. M. Bikchentaev, ‘‘On the convergence of integrable operators affiliated to a finite von Neumann algebra,’’ Proc. Steklov Inst. Math. 293, 67–76 (2016).

    Article  MathSciNet  Google Scholar 

  15. A. M. Bikchentaev, ‘‘Commutativity of projections and characterization of traces on von Neumann algebras,’’ Sib. Math. J. 51, 971–977 (2010).

    Article  MathSciNet  Google Scholar 

  16. P. R. Halmos, A Hilbert Space Problem Book (D. Van Nostrand, Princeton, 1967).

    MATH  Google Scholar 

  17. I. M. Glazman and Yu. I. Lyubich, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form (MIT, Cambridge, MA, 1974).

    MATH  Google Scholar 

  18. A. N. Sherstnev, Methods of Bilinear Forms in Non-Commutative Measure and Integral Theory (Fizmatlit, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  19. A. M. Bikchentaev, ‘‘Differences of idempotents in \(C^{*}\)-algebras,’’ Sib. Math. J. 58, 183–189 (2017).

    Article  MathSciNet  Google Scholar 

  20. M. Takesaki, Theory of Operator Algebras, Vol. 1, Vol. 5 of Encyclopaedia of Mathematical Sciences on Operator Algebras and Non-Commutative Geometry (Springer, Berlin, 2002).

  21. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 1: Elementary Theory (Am. Math. Soc., Providence, RI, 1997).

  22. A. Bikchentaev and R. Yakushev, ‘‘States on symmetric logics: Conditional probability and independence. II,’’ Int. J. Theor. Phys. 53, 397–408 (2014).

    Article  MathSciNet  Google Scholar 

  23. T. Fack and H. Kosaki, ‘‘Generalized \(s\)-numbers of \(\tau\)-measurable operators,’’ Pacif. J. Math. 123, 269–300 (1986).

    Article  Google Scholar 

  24. S. Lord, F. Sukochev, and D. Zanin, Singular Traces. Theory and Applications, Vol. 46 of De Gruyter Studies in Mathematics (De Gruyter, Berlin, 2013).

  25. M. Argerami and P. Massey, ‘‘A Schur–Horn theorem in \(II_{1}\) factors,’’ Indiana Univ. Math. J. 56, 2051–2059 (2007).

    Article  MathSciNet  Google Scholar 

  26. K. Dykema, F. Sukochev, and D. Zanin, ‘‘A decomposition theorem in \(II_{1}\)-factors,’’ J. Reine Angew. Math. 708, 97–114 (2015).

    MathSciNet  MATH  Google Scholar 

  27. F. Hiai and Y. Nakamura, ‘‘Closed convex hulls of unitary orbits in von Neumann algebras,’’ Trans. Am. Math. Soc. 323, 1–38 (1991).

    Article  MathSciNet  Google Scholar 

  28. A. Ber, K. Kudaybergenov, and F. Sukochev, ‘‘Notes on derivations of Murray–von Neumann algebras,’’ J. Funct. Anal. 279, 108589 (2020).

    Article  MathSciNet  Google Scholar 

  29. Z. Chen, H. Rubin, and R. A. Vitale, ‘‘Independence and determination of probabilities,’’ Proc. Am. Math. Soc. 125, 3721–3723 (1997).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was carried out as part of the development program of the Scientific and Educational Mathematical Center of the Volga Federal District, agreement no. 075-02-2020-1478.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Bikchentaev or P. N. Ivanshin.

Additional information

(Submitted by G. G. Amosov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikchentaev, A.M., Ivanshin, P.N. On Independence of Events in Noncommutative Probability Theory. Lobachevskii J Math 42, 2306–2314 (2021). https://doi.org/10.1134/S1995080221100061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100061

Keywords:

Navigation