Skip to main content
Log in

Combinatorial Approach to the Description of Random Fields

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We develop a combinatorial approach to the description of lattice random fields with general (Polish) state space. This approach based on so-called P-functions, which can be interpreted as a system of limiting correlation functions. We suggest a method of construction of P-functions, which can be applied in the theory of Gibbs random fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. V. Ambartzumian and H. S. Sukiasian, ‘‘Inclusion-exclusion and point processes,’’ Acta Appl. Math. 22, 15–31 (1991).

    MathSciNet  Google Scholar 

  2. N. N. Bogoliubov and B. I. Khatset, ‘‘On some mathematical problems in the theory of statistical equilibrium,’’ Dokl. Akad. Nauk 66, 321–324 (1949).

    Google Scholar 

  3. S. Dachian and B. S. Nahapetian, ‘‘Inclusion-exclusion description of random fields,’’ J. Contemp. Math. Anal. Arm. Acad. Sci. 30 (6), 50–61 (1995).

    MathSciNet  Google Scholar 

  4. S. Dachian and B. S. Nahapetian, ‘‘Description of random fields by means of one–point conditional distributions and some applications,’’ Markov Processes Relat. Fields 7, 193–214 (2001).

    MathSciNet  MATH  Google Scholar 

  5. S. Dachian and B. S. Nahapetian, ‘‘Description of specifications by means of probability distributions in small volumes under condition of very week positivity,’’ J. Stat. Phys. 117, 281–300 (2004).

    Article  Google Scholar 

  6. S. Dachian and B. S. Nahapetian, ‘‘On the relationship of energy and probability in models of classical statistical physics,’’ Markov Processes Relat. Fields 25, 649–681 (2019).

    MathSciNet  MATH  Google Scholar 

  7. A. Dalalyan and B. S. Nahapetian, ‘‘Description of random fields by means of one-point finite conditional distribution,’’ J. Contemp. Math. Anal. Arm. Acad. Sci. 46, 113–119 (2011).

    MathSciNet  MATH  Google Scholar 

  8. R. L. Dobrushin, ‘‘The description of a random field by means of conditional probabilities and conditions of its regularity,’’ Theory Probab. Appl. 13, 197–224 (1968).

    Article  MathSciNet  Google Scholar 

  9. R. L. Dobrushin, ‘‘Gibbs random fields for lattice systems with pair-wise interaction,’’ Funct. Anal. Appl. 2, 292–301 (1968).

    Article  Google Scholar 

  10. G. Gallavotti and S. Miracle-Sole, ‘‘Correlation functions of a lattice system,’’ Commun. Math. Phys. 7, 274–288 (1968).

    Article  MathSciNet  Google Scholar 

  11. L. Koralov, ‘‘An inverse problem for Gibbs fields,’’ CRM Proc. Lect. Notes 42, 299–307 (2007).

  12. L. Khachatryan and B. S. Nahapetian, ‘‘On direct and inverse problems in the description of lattice random fields,’’ in Proceedings of the 11th International Conference on Stochastic and Analytic Methods in Mathematical Physics, Vol. 6 of Lecture on Pure Applied Mathematics (Univ. Potsdam, 2020), pp. 107–116.

  13. A. N. Kolmogorov, Foundations of the Theory of Probability (Chelsea, Oxford, UK, 1950).

    Google Scholar 

  14. T. Kuna, J. L. Lebowitz, and E. R. Speer, ‘‘Realizability of point processes,’’ J. Stat. Phys. 129, 417–439 (2007).

    Article  MathSciNet  Google Scholar 

  15. P. I. Kuznetsov and R. L. Stratonovich, ‘‘On the mathematical theory of correlated random points,’’ Izv. Akad. Nauk SSSR, Ser. Mat. 20, 167–178 (1956).

    Google Scholar 

  16. A. Lenard, ‘‘Correlation functions and the uniqueness of the state in classical statistical mechanics,’’ Comm. Math. Phys. 30, 35–44 (1973).

    Article  MathSciNet  Google Scholar 

  17. A. Lenard, ‘‘States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures,’’ Arch. Ration. Mech. Anal. 59, 241–256 (1975).

    Article  MathSciNet  Google Scholar 

  18. R. A. Minlos, ‘‘Limiting Gibbs’ distribution,’’ Funct. Anal. Appl. 1, 140–150 (1967).

    Article  MathSciNet  Google Scholar 

  19. B. S. Nahapetian, ‘‘Strong mixing of a Gibbs random field with a discrete argument and some of its applications,’’ Izv. Akad. Nauk Arm. SSR, Ser. Mat. 3, 242–254 (1975).

    Google Scholar 

  20. D. Ruelle, ‘‘Correlation functions of classical gases,’’ Ann. Phys. (N. Y.) 25, 109 (1963).

    Article  MathSciNet  Google Scholar 

  21. D. Ruelle, Statistical Mechanics, Rigorous Results (Benjamin, New York, 1969).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Khachatryan or B. S. Nahapetian.

Additional information

(Submitted by S. A. Grigoryan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachatryan, L.A., Nahapetian, B.S. Combinatorial Approach to the Description of Random Fields. Lobachevskii J Math 42, 2337–2347 (2021). https://doi.org/10.1134/S1995080221100103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100103

Keywords:

Navigation