Skip to main content
Log in

Nanoarchitectonics of Cerium Oxide/Zinc Oxide/Graphene Oxide Composites for Evaluation of Cytotoxicity and Apoptotic Behavior in HeLa and VERO Cell Lines

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Using the ultrasonic approach, we produced a morphology involving a cerium oxide/ zinc oxide/graphene oxide nanocomposite-based system. The developed nanocomposite was examined using X-Ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The average crystallite size was found to be 11.44 nm, as determined by XRD. An FTIR analysis was used to confirm the existence of functional groups. FESEM was used to verify the morphological properties of CeO2/ZnO/GO. The micromorphology of the CeO2/ZnO/GO nanocomposite reveals a smoother sheet-like structure. In addition, using an antiproliferative assay test, the developed nanosystem was evaluated for its scavenging anti-cancer capability against HeLa cell lines in various doses at various incubation intervals. In our investigation, the effective IC50 concentration was reported to be 62.5 µg/ml at 72 h. Further, the developed nanosystem was evaluated for its killing efficacy against a normal cell line. To identify the apoptosis-associated alterations of cell membranes throughout the apoptosis process, a dual acridine orange/ethidium bromide (AO/EB) fluorescent staining was done using the CeO2/ZnO/GO nanocomposite in three specific concentrations. The quantitative analysis was carried out using flow cytometry (FACS study) to determine the cell cycle during which the greatest number of HeLa cells were destroyed. According to the results of the FACS investigation, the maximum cell cycle has taken place in P2, P4.As a result, the newly designed CeO2/ZnO/GO hybrid has demonstrated improved anti-cancer efficacy against the HeLa cell line, making it a better therapeutic agent for cervical cancer detection.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sorin Emilian Leucuta, Nanotechnology for delivery of drugs and biomedical applications. Curr Clin Pharmacol 5, 257–280 (2010)

    Article  Google Scholar 

  2. Ganesh Balasubramaniam, Rajshree H. Gaidhani, Arshi Khan, Sushama Saoba, Umesh Mahantshetty, Amita Maheshwari, Survival rate of cervical cancer from a study conducted in India. Indian J Med Sci (2020). https://doi.org/10.25259/IJMS_140_2020

    Article  Google Scholar 

  3. D. Karthik Kannan, Kakarla Raghava Radhika, Anjanapura V. Reddy, Kishor Kumar Raghu, Geetha Palani Sadasivuni, K. Gurushankar, Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express 2(1), 010014 (2021)

    Google Scholar 

  4. Sarah C. Baetke, Twan Lammers, Fabian Kiessling, Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol (2015). https://doi.org/10.1259/bjr.20150207

    Article  PubMed  PubMed Central  Google Scholar 

  5. B. Sumer, J. Gao, Theranostic nanomedicine for cancer. Nanomedicine 3, 137–140 (2008)

    Article  Google Scholar 

  6. M.R. Longmire, M. Ogawa, P.L. Choyke, H. Kobayashi, Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem. 22(6), 993–1000 (2011)

    Article  CAS  Google Scholar 

  7. J. Grimm, D.A. Scheinberg, Will nanotechnology influence targeted cancer therapy? Semin Radiat Oncol. 21(2), 80–87 (2011)

    Article  Google Scholar 

  8. P. Sánchez-Moreno, J.L. Ortega-Vinuesa, J.M. Peula-García, J.A. Marchal, H. Boulaiz, Smart drug-delivery systems for cancer nanotherapy. Curr. Drug Targets 17, 339–359 (2016). (CrossRef)

    Google Scholar 

  9. D. Sahu, G.M. Kannan, M. Tailang, R. Vijayaraghavan, In vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. J. Nanosci. 2016, 4023852 (2016). (CrossRef)

    Article  Google Scholar 

  10. K. McNamara, S.A.M. Tofail, Nanoparticles in biomedical applications. Adv. Phys. X 2, 54–88 (2017)

  11. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). (CrossRef)

    Article  CAS  Google Scholar 

  12. H. Sharma, P.K. Mishra, S. Talegaonkar, B. Vaidya, Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov. Today 20, 1143–1151 (2015)

    Article  CAS  Google Scholar 

  13. B. Zhang, P. Wei, Z. Zhou, T. Wei, Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv. Drug. Deliv. Rev. 105, 145–162 (2016). ([CrossRef] [PubMed])

    Article  CAS  Google Scholar 

  14. S.M. Hirst, A.S. Karakoti, R.D. Tyler, N. Sriranganathan, S. Seal, C.M. Reilly, Anti-inflammatory properties of cerium oxide nanoparticles. Small 5, 2848–2856 (2009). (CrossRef)

    Article  CAS  Google Scholar 

  15. G. Lalwani, M. D’Agati, A.M. Khan, B. Sitharaman, Toxicology of graphene-based nanomaterials. Adv. Drug. Deliv. Rev. 105, 109–144 (2016). (CrossRef)

    Article  CAS  Google Scholar 

  16. T. Palacios, Graphene electronics: thinking outside the silicon box. Nat. Nanotechnol 6, 464–465 (2011). ([CrossRef] [PubMed])

    Article  CAS  Google Scholar 

  17. D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Energetic graphene oxide: challenges and opportunities. Nano Today 7, 137–152 (2012). (CrossRef)

    Article  CAS  Google Scholar 

  18. M.J. Akhtar, M. Ahamed, H.A. Alhadlaq, M.A.M. Khan, S.A. Alrokayan, Glutathione replenishing potential of CeO2 nanoparticles in human breast and fibrosarcoma cells. J. Colloid Interface Sci. 453, 21–27 (2015). ([CrossRef] [PubMed])

    Article  CAS  Google Scholar 

  19. C. Wiegand, U.C. Hipler, S. Boldt, J. Strehle, U. Wollina, Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis. Clin. Cosmet. Investig. Derm. 6, 115–121 (2013)

    CAS  Google Scholar 

  20. Karthik Kannan, A.S. Devi Radhika, Kishor Kumar Nesaraj, Kakarla Raghava Sadasivuni, Deepak Kasai Reddy, Anjanapura V. Raghu, Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater Sci Energ Technol 3, 853–861 (2020)

    CAS  Google Scholar 

  21. Karthik Kannan, Devi Radhika, Kishor Kumar Sadasivunia, Kakarla Raghava Reddy, Anjanapura V. Raghu, Nanostructured metal oxides and its hybridsfor biomedical applications. Adv Colloid Interf Sci 281, 102178 (2020)

    Article  CAS  Google Scholar 

  22. S. Mittal, A. Pandey, Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/891934

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. Saranya, B.S. Sreeja, G. Padmalaya, S. Radha, M. Arivanandan, Microwave thermally assisted porous structured cerium oxide/zinc oxide design: fabrication, electrochemical activity towards Pb Ions, anticancer assessment in HeLa and VERO cell lines. J Inorg Organometal Poly Mater 31, 1279–1292 (2021)

    Article  CAS  Google Scholar 

  24. E.A. PeishengXu, V. Kirk, W.J. Murdoch, Y. Zhan, D.D. Isaak, M. Radosz, Y. Shen, Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles. Biomacromol 7, 829–835 (2006)

    Article  Google Scholar 

  25. Tomas Vicar, Martina Raudenska, Jaromir Gumulec, Jan Balvan, The quantitative-phase dynamics of apoptosis and lytic cell death. Sci Rep 10, 1566 (2020)

    Article  CAS  Google Scholar 

  26. G. Jayakumar, A.A. Irudayaraj, A.D. Raj, Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite. Appl. Phys. A Mater. Sci. Process. 125, 1–9 (2019). https://doi.org/10.1007/s00339-019-3044-4

    Article  CAS  Google Scholar 

  27. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S. Austin Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and Electrochemical Studies of rGO/ZnO Nanocomposite for Supercapacitor Application. J. Inorg. Organomet. Polym Mater. 2018(28), 2046–2055 (2018)

    Article  Google Scholar 

  28. Arun Murali, Prashant K. Sarswat, Michael L. Free, Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications. Environ Sci Pollut Res 27, 25042–25056 (2020)

    Article  CAS  Google Scholar 

  29. Q.P. Zhang, X.N. Xu, Y.T. Liu, M. Xu, S.H. Deng, Y. Chen, H. Yuan, F. Yu, Y. Huang, K. Zhao, S. Xu, G. Xiong, A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals. Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/srep46424

    Article  Google Scholar 

  30. O.D. Ogundare, O.J. Akinribide, A.R. Adetunji, M.O. Adeoye, P.A. Olubambi, Crystallite size determination of thermally deposited Gold Nanoparticles. Procedia Manuf. 30, 173–179 (2019). https://doi.org/10.1016/j.promfg.2019.02.025

    Article  Google Scholar 

  31. J. Liu, G. Lv, W. Gu, Z. Li, A. Tang, L. Mei, A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. J. Mater. Chem. C5, 5024–5030 (2017). https://doi.org/10.1039/c7tc00935f

    Article  CAS  Google Scholar 

  32. M.A. Ahmad, S. Aslam, F. Mustafa, U. Arshad, Synergistic antibacterial activity of surfactant free Ag–GO nanocomposites. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-020-80013-w

    Article  CAS  Google Scholar 

  33. D. Parimi, V. Sundararajan, O. Sadak, S. Gunasekaran, S.S. Mohideen, A. Sundaramurthy, Synthesis of positively and negatively charged CeO2 nanoparticles: investigation of the role of surface charge on growth and development of drosophila melanogaster. ACS Omega 4, 104–113 (2019). https://doi.org/10.1021/acsomega.8b02747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Kumari, P. Sharma, S. Yadav, J. Kumar, A. Vij, P. Rawat, S. Kumar, C. Sinha, J. Bhattacharya, C.M. Srivastava, S. Majumder, A novel synthesis of the Graphene Oxide-Silver (GO-Ag) nanocomposite for unique physiochemical applications. ACS Omega 5, 5041–5047 (2020). https://doi.org/10.1021/acsomega.9b03976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. Ickecan, R. Zan, S. Nezir, Eco-friendly synthesis and characterization of reduced graphene oxide. J. Phys. Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/902/1/012027

    Article  Google Scholar 

  36. K. Ghule, A.V. Ghule, B.J. Chen, Y.C. Ling, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem. 8, 1034–1041 (2006). https://doi.org/10.1039/b605623g

    Article  CAS  Google Scholar 

  37. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2), 55–63 (1983)

    Article  CAS  Google Scholar 

  38. J. Saranya, B.S. Sreeja, G. Padmalaya, S. Radha, T. Manikandan, Ultrasonic Assisted Cerium Oxide/Graphene Oxide Hybrid: preparation, Anti-proliferative, Apoptotic Induction and G2/M Cell Cycle Arrest in HeLa Cell Lines. J Inorg Organometal Poly Mater 30, 2666–2676 (2019)

    Article  Google Scholar 

  39. J. Das, Y.-J. Choi, J. Han, M. Abu Musa, T. Reza, J.-H. Kim, Nanoceria-mediated delivery of doxorubicin enhances the anti tumour efciency in ovarian cancer cells via apoptosis. Sci. Rep. 7, 9513 (2017)

    Article  Google Scholar 

  40. E. Montiel-Eulef, T. Jara, M. Garcés, P. Leal, Cytotoxic efect of double emulsion (W/O/W) CuSO4 loaded PLA nanoparticles on MKN-45 gastric adenocarcinoma cell line. Int. J. Morphol. 32, 61–69 (2014)

    Article  Google Scholar 

  41. R. Gupta, H. Xie, Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 37, 209–230 (2018)

    Article  Google Scholar 

  42. E. Nourmohammadi, H. Khoshdel-sarkarizi, R. Nedaeinia, H.R. Sadeghnia, L. Hasanzadeh, M. Darroudi, R. Kazemioskuee, Evaluation of anticancer efects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J. Cell. Physiol. 234(4), 4987–4996 (2019)

    Article  CAS  Google Scholar 

  43. R. Wahab, F. Khan, A. Gupta, H. Wiggers, Q. Saqui, M. Faisal, S. Ansari, Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Adv. 9, 13336–13347 (2019)

    Article  CAS  Google Scholar 

  44. P. Benjwal, M. Kumar, P. Chamoli, K.K. Kar, Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(iii) by reduced graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites. RSC Adv. 5, 73249–73260 (2015). https://doi.org/10.1039/c5ra13689j

    Article  CAS  Google Scholar 

  45. M. Culcasi, L. Benameur, A. Mercier, C. Lucchesi, H. Rahmouni, A. Asteian, G. Casano, A. Botta, H. Kovacic, S. Pietri, EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem. Biol. Interact. 199, 161–176 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saranya.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, J., Sreeja, B.S., Arivanandan, M. et al. Nanoarchitectonics of Cerium Oxide/Zinc Oxide/Graphene Oxide Composites for Evaluation of Cytotoxicity and Apoptotic Behavior in HeLa and VERO Cell Lines. J Inorg Organomet Polym 32, 560–571 (2022). https://doi.org/10.1007/s10904-021-02128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02128-5

Keywords

Navigation