Skip to main content
Log in

Analysis for Multiple Cracks in 2D Piezoelectric Bimaterial Using the Singular Integral Equation Method

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A singular integral equation method is proposed to analyze the two-dimensional (2D) multiple cracks in anisotropic piezoelectric bimaterial. Using the Somigliana formula, a set of singular integral equations for the multiple crack problems are derived, in which the unknown functions are the derivatives of the generalized displacement discontinuities of the crack surfaces. Then, the exact analytical solution of the extended singular stresses and extended stress intensity factors near the crack tip is obtained. Singular integrals of the singular integral equations are computed by the Gauss–Chebyshev collocation method. Finally, numerical solutions of the extended stress intensity factors of some examples are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meitzler AH, Sittig EK. Characterization of piezoelectric transducers used in ultrasonic devices operating above 0.1 GHz. J Appl Phys. 1969;40(11):4341–52.

  2. Kudriavtsev BA, Parton VZ, Rakitin VI. Fracture mechanics of piezoelectric materials. Rectilinear tunnel crack on the boundary with a conductor. J Appl Math Mech. 1975;39(1):136–46.

  3. Williams ML. The stresses around a fault or crack in dissimilar media. Bull Seismol Soc Am. 1959;49(2):199–204.

    Article  MathSciNet  Google Scholar 

  4. Erdogan F, Gupta GD. Layered composites with an interface flaw. Int J Solids Struct. 1971;7(8):1089–107.

    Article  Google Scholar 

  5. Erdogan F. Mixed boundary value problems in mechanics. Bethlehem: Lehigh University; 1975.

    MATH  Google Scholar 

  6. Beom HG, Atluri SN. Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int J Fract. 1996;75(2):163–83.

    Article  Google Scholar 

  7. Herrmann KP, Loboda VV, Govorukha VB. On contact zone models for an electrically impermeable interface crack in a piezoelectric bimaterial. Int J Fract. 2001;111(3):203–27.

    Article  Google Scholar 

  8. Ou ZC, Wu X. On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int J Solids Struct. 2003;40(26):7499–511.

    Article  Google Scholar 

  9. Shen S, Nishioka T, Hu SL. Crack propagation along the interface of piezoelectric bimaterial. Theoret Appl Fract Mech. 2000;34(3):185–203.

    Article  Google Scholar 

  10. Tian WY, Chen YH. Interaction between an interface crack and subinterface microcracks in metal- piezoelectric bimaterials. Int J Solids Struct. 2000;37(52):7743–57.

    Article  Google Scholar 

  11. Fang QH, Feng H, Liu YW. Electroelastic interaction between a piezoelectric screw dislocation and a circularly layered inclusion with imperfect interfaces. Appl Math Mech. 2013;34(1):49–62 (in Chinese).

  12. Ting TCT, Hoang PH. Singularities at the tip of a crack normal to the interface of an anisotropic layered composite. Int J Solids Struct. 1984;20(5):439–54.

    Article  Google Scholar 

  13. Li XF, Wang BL. Anti-plane shear crack normal to and terminating at the interface of two bonded piezoelectric ceramics. Int J Solids Struct. 2007;44(11):3796–810.

    Article  Google Scholar 

  14. Tang RJ, Qin TY. Method of hypersingular integral equations in three-dimensional fracture mechanics. Acta Mech Sin. 1993;25:665–75.

    Google Scholar 

  15. Zhu BJ, Qin TY. Hypersingular integral equation method for a three-dimensional crack in anisotropic electro-magneto-elastic bimaterials. Theoret Appl Fract Mech. 2007;47(3):219–32.

    Article  MathSciNet  Google Scholar 

  16. Tian W, Chau KT. Arbitrarily oriented crack near interface in piezoelectric bimaterials. Int J Solids Struct. 2003;40(8):1943–58.

    Article  Google Scholar 

  17. Yang PS, Liou JY, Sung JC. Subinterface crack in an anisotropic piezoelectric bimaterial. Int J Solids Struct. 2008;45(18):4990–5014.

    Article  Google Scholar 

  18. Fan CY, Zhou YH, Wang H, Zhao MH. Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mech Solida Sin. 2009;22(3):232–9.

    Article  Google Scholar 

  19. Sharma K, Bui TQ, Zhang C, et al. Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Eng Fract Mech. 2013;104:114–39.

    Article  Google Scholar 

  20. Ma P, Su RKL, Feng WJ, Li YS. The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials. Int J Numer Meth Eng. 2015;103(2):94–113.

    Article  MathSciNet  Google Scholar 

  21. Ma P, Su RKL, Feng WJ. Moving crack with a contact zone at interface of magnetoelectroelastic bimaterial. Eng Fract Mech. 2017;181:143–60.

    Article  Google Scholar 

  22. Ueda S, Okada M, Nakaue Y. Transient thermal response of a functionally graded piezoelectric laminate with a crack normal to the bimaterial interface. J Therm Stresses. 2018;41(1):98–118.

    Article  Google Scholar 

  23. Mabuchi Y, Ueda S. Transient thermal response of functionally graded piezoelectric laminates with an infinite row of parallel cracks normal to the bimaterial interface. Theor Appl Mech Lett. 2019;9(5):289–92.

    Article  Google Scholar 

  24. Pan E. A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng Anal Bound Elem. 1999;23(1):67–76.

    Article  Google Scholar 

  25. Chung MY, Ting TCT. Line force, charge, and dislocation in anisotropic piezoelectric composite wedges and spaces. J Appl Mech. 1995;62(2):423–8.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their special thanks to the National Natural Science Foundation of China (Project No. 11172320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiyan Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T., Feng, X. & Qin, T. Analysis for Multiple Cracks in 2D Piezoelectric Bimaterial Using the Singular Integral Equation Method. Acta Mech. Solida Sin. 35, 261–272 (2022). https://doi.org/10.1007/s10338-021-00281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00281-5

Keywords

Navigation