1932

Abstract

The past century has been a time of unparalleled changes in global climate and global biogeochemistry. At the forefront of the study of these changes are regular time-series observations at remote stations of atmospheric CO, isotopes of CO, and related species, such as O and carbonyl sulfide (COS). These records now span many decades and contain a wide spectrum of signals, from seasonal cycles to long-term trends. These signals are variously related to carbon sources and sinks, rates of photosynthesis and respiration of both land and oceanic ecosystems, and rates of air-sea exchange, providing unique insights into natural biogeochemical cycles and their ongoing changes. This review provides a broad overview of these records, focusing on what they have taught us about large-scale global biogeochemical change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-125406
2021-10-18
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012220-125406.html?itemId=/content/journals/10.1146/annurev-environ-012220-125406&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Revelle R, Broecker W, Craig H, Keeling CD, Smagorinsky J. 1965. Atmospheric carbon dioxide. Report of the Environmental Pollution Panel President's Advisory Committee, November 1965111–33 Washington, DC: The White House
    [Google Scholar]
  2. 2. 
    Keeling CD, Adams JA Jr., Ekdahl CA Jr., Guenther PR. 1976. Atmospheric carbon dioxide variations at the South Pole. Tellus 28:552–64
    [Google Scholar]
  3. 3. 
    Bacastow RB. 1976. Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature 261:116–18
    [Google Scholar]
  4. 4. 
    Pearman GI, Hyson P. 1980. Activities of the global biosphere as reflected in atmospheric CO2 records. J. Geophys. Res. Oceans 85:4457–67
    [Google Scholar]
  5. 5. 
    Keeling RF, Piper SC, Heimann M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–21
    [Google Scholar]
  6. 6. 
    Tans PP, Conway TJ, Nakazawa T. 1989. Latitudinal distribution of the source and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model. J. Geophys. Res. Atmos. 94:5151–73
    [Google Scholar]
  7. 7. 
    Tans PP, Fung IY, Takahashi T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247:1431–38
    [Google Scholar]
  8. 8. 
    Ciais P, Tans PP, Trolier M, White JWC, Francey RJ. 1995. A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269:1098–102
    [Google Scholar]
  9. 9. 
    Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–73
    [Google Scholar]
  10. 10. 
    Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:3269–340
    [Google Scholar]
  11. 11. 
    Graven HD. 2016. The carbon cycle in a changing climate. Phys. Today 69:48–54
    [Google Scholar]
  12. 12. 
    Graven H, Keeling RF, Rogelj J. 2020. Changes to carbon isotopes in atmospheric CO2 over the Industrial Era and into the future. Glob. Biogeochem. Cycle 34:e2019GB006170
    [Google Scholar]
  13. 13. 
    Keeling RF, Manning AC 2014. Studies of recent changes in atmospheric O2 content. Treatise on Geochemistry, Vol. 5: The Atmosphere RF Keeling, L Russell 385–404 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  14. 14. 
    Whelan M, Lennartz S, Gimeno T, Wehr R, Wohlfahrt G et al. 2018. Reviews and syntheses: carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences 15:3625–57
    [Google Scholar]
  15. 15. 
    Keeling CD, Whorf TP, Wahlen M, van der Plichtt J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–70
    [Google Scholar]
  16. 16. 
    WMO (World Meteorol. Organ.) 2018. The state of greenhouse gases in the atmosphere based on global observations through 2017 WMO Greenh. Gas Bull. 14 WMO, Geneva:
  17. 17. 
    Rubino M, Etheridge DM, Thornton DP, Howden R, Allison CE et al. 2019. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 11:473–92
    [Google Scholar]
  18. 18. 
    Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM et al. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–82
    [Google Scholar]
  19. 19. 
    Patra P, Takigawa M, Dutton G, Uhse K, Ishijima K et al. 2009. Transport mechanisms for synoptic, seasonal and interannual SF6 variations and “age” of air in troposphere. Atmos. Chem. Phys. 9:1209–15
    [Google Scholar]
  20. 20. 
    Rafelski LE, Piper SC, Keeling RF. 2009. Climate effects on atmospheric carbon dioxide over the last century. Tellus B 61:718–31
    [Google Scholar]
  21. 21. 
    Knorr W. 2009. Is the airborne fraction of anthropogenic CO2 emissions increasing?. Geophys. Res. Lett. 36:L21710
    [Google Scholar]
  22. 22. 
    Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K et al. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol 229:2413–45
    [Google Scholar]
  23. 23. 
    Huntzinger D, Michalak A, Schwalm C, Ciais P, King AW et al. 2017. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7:4765
    [Google Scholar]
  24. 24. 
    Fu Z, Dong J, Zhou Y, Stoy PC, Niu S. 2017. Long term trend and interannual variability of land carbon uptake—the attribution and processes. Environ. Res. Lett. 12:014018
    [Google Scholar]
  25. 25. 
    Keeling CD. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:200–3
    [Google Scholar]
  26. 26. 
    Heimann M, Keeling CD, Tucker CJ. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 3. Seasonal cycle and synoptic time scale variations. Aspects of Climate Variability in the Pacific and the Western Americas, Vol. 55 DH Peterson 277–303 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  27. 27. 
    Pearman GI, Hyson P. 1981. The annual variation of atmospheric CO2 concentration observed in the northern hemisphere. J. Geophys. Res. Oceans 86:9839–43
    [Google Scholar]
  28. 28. 
    Bacastow RB, Keeling CD, Whorf TP. 1985. Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res. Atmos. 90:10529–40
    [Google Scholar]
  29. 29. 
    Keeling CD, Chin JFS, Whorf TP. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–49
    [Google Scholar]
  30. 30. 
    Randerson JT, Thompson MV, Conway TJ, Fung IY, Field CB. 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob. Biogeochem. Cycle 11:535–60
    [Google Scholar]
  31. 31. 
    Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341:1085–89
    [Google Scholar]
  32. 32. 
    Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M et al. 2016. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351:696–99
    [Google Scholar]
  33. 33. 
    Lin X, Rogers BM, Sweeney C, Chevallier F, Arshinov M et al. 2020. Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification. PNAS 117:21079–87
    [Google Scholar]
  34. 34. 
    Thomas RT, Prentice LC, Graven H, Ciais P, Fisher JB et al. 2016. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO2 and greening observations. Geophys. Res. Lett. 43:11339–49
    [Google Scholar]
  35. 35. 
    Haverd V, Smith B, Canadell JG, Cuntz M, Mikaloff Fletcher SE et al. 2020. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26:2390–402
    [Google Scholar]
  36. 36. 
    Randerson JT, Field CB, Fung IY, Tans PP. 1999. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26:2765–68
    [Google Scholar]
  37. 37. 
    Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M et al. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52
    [Google Scholar]
  38. 38. 
    Keeling CD, Revelle R. 1985. Effects of El Nino/Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics 20:437–50
    [Google Scholar]
  39. 39. 
    Nakazawa T, Morimoto S, Aoki S, Tanaka M. 1993. Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan. Tellus B 45:258–74
    [Google Scholar]
  40. 40. 
    Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans PP 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–46
    [Google Scholar]
  41. 41. 
    Jones CD, Collins M, Cox PM, Spall SA. 2001. The carbon cycle response to ENSO: a coupled climate-carbon cycle model study. J. Climate 14:4113–29
    [Google Scholar]
  42. 42. 
    Feely RA, Wanninkhof R, Takahashi T, Tans P. 1999. Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398:597–601
    [Google Scholar]
  43. 43. 
    Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A et al. 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–99
    [Google Scholar]
  44. 44. 
    Poulter B, Frank D, Ciais P, Myneni RB, Andela N et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–3
    [Google Scholar]
  45. 45. 
    Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C et al. 2013. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–44
    [Google Scholar]
  46. 46. 
    Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S et al. 2017. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541:516–20
    [Google Scholar]
  47. 47. 
    Humphrey V, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, Seneviratne SI. 2018. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560:628–31
    [Google Scholar]
  48. 48. 
    Brovkin V, Loren S, Jungclaus J, Raddatz T, Timmreck C et al. 2010. Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium. Tellus B 62:674–81
    [Google Scholar]
  49. 49. 
    Angert A, Biraud S, Bonfils C, Buermann W, Fung I. 2004. CO2 seasonality indicates origins of post-Pinatubo sink. Geophys. Res. Lett. 31:L11103
    [Google Scholar]
  50. 50. 
    Bastos A, Ciais P, Barichivich J, Bopp L, Brovkin V et al. 2016. Re-evaluating the 1940s CO2 plateau. Biogeosciences 13:4877–97
    [Google Scholar]
  51. 51. 
    Ballantyne A, Smith W, Anderegg W, Kauppi P, Sarmiento J et al. 2017. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Climate Change 7:148–52
    [Google Scholar]
  52. 52. 
    Fan S-M, Blaine TL, Sarmiento JL. 1999. Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since 1959. Tellus B 51:863–70
    [Google Scholar]
  53. 53. 
    Ciais P, Tan J, Wang X, Roedenbeck C, Chevallier F et al. 2019. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568:221–25
    [Google Scholar]
  54. 54. 
    Keeling CD, Piper SC, Whorf TP, Keeling RF. 2011. Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003. Tellus B 63:1–22
    [Google Scholar]
  55. 55. 
    Resplandy L, Keeling RF, Roedenbeck C, Stephens BB, Khatiwala S et al. 2018. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11:504–8
    [Google Scholar]
  56. 56. 
    Keeling CD, Piper SC, Heimann M. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. Aspects of Climate Variability in the Pacific and the Western Americas, Vol. 55 DH Peterson 305–63 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  57. 57. 
    Stuiver M, Pollach HA. 1977. Discussion: Reporting of 14C data. Radiocarbon 19:355–63
    [Google Scholar]
  58. 58. 
    Rafter T, Fergusson G. 1957. “Atom bomb effect”—recent increase of carbon-14 content of the atmosphere and biosphere. Science 126:557–58
    [Google Scholar]
  59. 59. 
    Nydal R, Lövseth K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. J. Geophys. Res. Oceans 88:3621–42
    [Google Scholar]
  60. 60. 
    Levin I, Naegler T, Kromer B, Diehl M, Francey RJ et al. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62:26–46
    [Google Scholar]
  61. 61. 
    Graven H, Allison CE, Etheridge DM, Hammer S, Keeling RF et al. 2017. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 10:4405–17
    [Google Scholar]
  62. 62. 
    Turnbull JC, Mikaloff Fletcher SE, Brailsford GW, Moss RC, Norris MW, Steinkamp K 2017. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014. Atmos. Chem. Phys. 17:14771–84
    [Google Scholar]
  63. 63. 
    Van de Wal R, Meijer H, De Rooij M, Van der Veen C. 2007. Radiocarbon analyses along the EDML ice core in Antarctica. Tellus B 59:157–65
    [Google Scholar]
  64. 64. 
    Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–87
    [Google Scholar]
  65. 65. 
    Suess HE. 1955. Radiocarbon concentration in modern wood. Science 122:415–17
    [Google Scholar]
  66. 66. 
    Graven HD, Guilderson TP, Keeling RF. 2012. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: analysis of the long-term trend. J. Geophys. Res. Atmos. 117:D02302
    [Google Scholar]
  67. 67. 
    Graven HD, Guilderson TP, Keeling RF. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. J. Geophys. Res. Atmos. 117:D02303
    [Google Scholar]
  68. 68. 
    Hesshaimer V, Heimann M, Levin I 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:201–3
    [Google Scholar]
  69. 69. 
    Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G et al. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Glob. Biogeochem. Cycle 21:GB2015
    [Google Scholar]
  70. 70. 
    Wanninkhof R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12:351–62
    [Google Scholar]
  71. 71. 
    Naegler T. 2009. Reconciliation of excess 14C-constrained global CO2 piston velocity estimates. Tellus B 61:372–84
    [Google Scholar]
  72. 72. 
    Naegler T, Levin I. 2006. Closing the global radiocarbon budget 1945–2005. J. Geophys. Res. Atmos. 111:D12311
    [Google Scholar]
  73. 73. 
    Naegler T, Levin I. 2009. Biosphere-atmosphere gross carbon exchange flux and the δ13CO2 and Δ14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. J. Geophys. Res. Atmos. 114:D17303
    [Google Scholar]
  74. 74. 
    Keeling RF, Graven HD, Welp LR, Resplandy L, Bi J et al. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. PNAS 114:10361–66
    [Google Scholar]
  75. 75. 
    Basu S, Lehman SJ, Miller JB, Andrews AE, Sweeney C et al. 2020. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. PNAS 117:13300–7
    [Google Scholar]
  76. 76. 
    Graven H, Fischer ML, Lueker T, Jeong S, Guilderson TP et al. 2018. Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environ. Res. Lett. 13:065007
    [Google Scholar]
  77. 77. 
    Miller JB, Lehman SJ, Verhulst KR, Miller CE, Duren RM et al. 2020. Large and seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon. PNAS 117:26681–87
    [Google Scholar]
  78. 78. 
    Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP et al. 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems JR Ehleringer, TE Cerling, MD Dearing 83–113 New York: Springer
    [Google Scholar]
  79. 79. 
    Vaughn BH, Evans CU, White JW, Still CJ, Masarie KA, Turnbull J 2010. Global network measurements of atmospheric trace gas isotopes. Isoscapes JB West, GJ Bowen, TE Dawson, KP Tu 3–31 New York: Springer
    [Google Scholar]
  80. 80. 
    Allison CE, Francey RJ. 2007. Verifying Southern Hemisphere trends in atmospheric carbon dioxide stable isotopes. J. Geophys. Res. Atmos. 112:D21304
    [Google Scholar]
  81. 81. 
    Tans PP, Berry JA, Keeling RF 1993. Oceanic 13C/12C observations: a new window on ocean CO2 uptake. Glob. Biogeochem. Cycle 7:353–68
    [Google Scholar]
  82. 82. 
    Keeling CD. 1979. The Suess effect: 13carbon-14carbon interrelations. Environ. Int. 2:229–300
    [Google Scholar]
  83. 83. 
    Quay PD, Tilbrook B, Wong CS. 1992. Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256:74–79
    [Google Scholar]
  84. 84. 
    Trudinger C, Enting I, Etheridge D, Francey R, Rayner P 2005. The carbon cycle over the past 1000 years inferred from the inversion of ice core data. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems JR Ehleringer, TE Cerling, MD Dearing 329–49 New York: Springer
    [Google Scholar]
  85. 85. 
    Randerson JT, Collatz GJ, Fessenden JE, Munoz AD, Still CJ et al. 2002. A possible global covariance between terrestrial gross primary production and 13C discrimination: consequences for the atmospheric 13C budget and its response to ENSO. Glob. Biogeochem. Cycle 16:1136
    [Google Scholar]
  86. 86. 
    Scholze M, Ciais P, Heimann M. 2008. Modeling terrestrial 13C cycling: climate, land use and fire. Glob. Biogeochem. Cycle 22:GB1009
    [Google Scholar]
  87. 87. 
    Ballantyne AP, Miller JB, Tans PP. 2010. Apparent seasonal cycle in isotopic discrimination of carbon in the atmosphere and biosphere due to vapor pressure deficit. Glob. Biogeochem. Cycle 24:GB3018
    [Google Scholar]
  88. 88. 
    Peters W, van der Velde IR, Van Schaik E, Miller JB, Ciais P et al. 2018. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11:744–48
    [Google Scholar]
  89. 89. 
    Keeling RF, Shertz SR. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358:723–27
    [Google Scholar]
  90. 90. 
    Tohjima Y, Mukai H, Machida T, Hoshina Y, Nakaoka S-I. 2019. Global carbon budgets estimated from atmospheric O2/N2 and CO2 observations in the western Pacific region over a 15-year period. Atmos. Chem. Phys. 19:9269–85
    [Google Scholar]
  91. 91. 
    Keeling RF, Stephens BB, Najjar RG, Doney SC, Archer D, Heimann M. 1998. Seasonal variations in the atmospheric O2/N2 ratio in relation to the kinetics of air-sea gas exchange. Glob. Biogeochem. Cycle 12:141–63
    [Google Scholar]
  92. 92. 
    Tohjima Y, Mukai H, Machida T, Nojiri Y, Gloor M. 2005. First measurements of the latitudinal atmospheric O2 and CO2 distributions across the western Pacific. Geophys. Res. Lett. 32:L17805
    [Google Scholar]
  93. 93. 
    Stephens BB, Keeling RF, Heimann M, Six KD, Murnane R, Caldeira K. 1998. Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Glob. Biogeochem. Cycle 12:213–30
    [Google Scholar]
  94. 94. 
    Keeling RF, Najjar RP, Bender ML, Tans PP. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob. Biogeochem. Cycle 7:37–67
    [Google Scholar]
  95. 95. 
    Keeling RF, Kortzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229
    [Google Scholar]
  96. 96. 
    Nevison CD, Mahowald NM, Doney SC, Lima ID, Cassar N. 2008. Impact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning. Biogeosciences 5:875–89
    [Google Scholar]
  97. 97. 
    Hamme RC, Keeling RF. 2008. Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen. Tellus B 60:706–17
    [Google Scholar]
  98. 98. 
    Rődenbeck C, Le Quéré C, Heimann M, Keeling RF 2008. Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data. Tellus B 60:685–705
    [Google Scholar]
  99. 99. 
    Eddebbar YA, Long MC, Resplandy L, Rodenbeck C, Rodgers KB et al. 2017. Impacts of ENSO on air-sea oxygen exchange: observations and mechanisms. Glob. Biogeochem. Cycle 31:901–21
    [Google Scholar]
  100. 100. 
    Nevison CD, Munro DR, Lovenduski NS, Keeling RF, Manizza M et al. 2020. Southern Annular Mode influence on wintertime ventilation of the Southern Ocean detected in atmospheric O2 and CO2 measurements. Geophys. Res. Lett. 47:e2019GL085667
    [Google Scholar]
  101. 101. 
    Jin X, Najjar RG, Louanchi F, Doney SC. 2007. A modeling study of the seasonal oxygen budget of the global ocean. J. Geophys. Res. Oceans 112:C05017
    [Google Scholar]
  102. 102. 
    Nevison CD, Keeling RF, Kahru M, Manizza M, Mitchell BG, Cassar N. 2012. Estimating net community production in the Southern Ocean based on atmospheric potential oxygen and satellite ocean color data. Glob. Biogeochem. Cycle 26:GB1020
    [Google Scholar]
  103. 103. 
    Gruber N, Gloor M, Fan SM, Sarmiento JL. 2001. Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Glob. Biogeochem. Cycle 15:783–803
    [Google Scholar]
  104. 104. 
    McKinley GA, Follows M, Marshal J 2003. Interannual variability of air-sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2. Geophys. Res. Lett. 30:1101
    [Google Scholar]
  105. 105. 
    Naegler T, Ciais P, Orr JC, Aumont O, Rodenbeck C. 2007. On evaluating ocean models with atmospheric potential oxygen. Tellus B 59:138–56
    [Google Scholar]
  106. 106. 
    Battle M, Mikaloff Fletcher SE, Bender ML, Keeling RF, Manning AC et al. 2006. Atmospheric potential oxygen: new observations and their implications for some atmospheric and oceanic models. Glob. Biogeochem. Cycle 20:GB1010
    [Google Scholar]
  107. 107. 
    Resplandy L, Keeling RF, Eddebbar Y, Brooks M, Wang R et al. 2019. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Sci. Rep. 9:20244
    [Google Scholar]
  108. 108. 
    Resplandy L, Keeling RF, Stephens BB, Bent JD, Jacobson A et al. 2016. Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon. Climate Dyn 47:3335–57
    [Google Scholar]
  109. 109. 
    Francey RJ, Tans PP. 1987. Latitudinal variation in oxygen-18 of atmospheric CO2. Nature 327:495–97
    [Google Scholar]
  110. 110. 
    Brenninkmeijer CAM, Kraft P, Mook WG. 1983. Oxygen isotope fractionation between CO2 and H2O. Chem. Geol. 41:181–90
    [Google Scholar]
  111. 111. 
    Rozanski K, Araguás-Araguás L, Gonfiantini R 1993. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, Vol. 78 PK Swart, KC Lohmann, J Mckenzie, S Savin 1–36 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  112. 112. 
    Dongmann G, Nurnberg HW, Forstel H, Wagener K. 1974. Enrichment of H218O in leaves of transpiring plants. Radiation Environ. Biophys. 11:41–52
    [Google Scholar]
  113. 113. 
    Keeling RF. 1995. The atmospheric oxygen cycle: the oxygen isotopes of atmospheric CO2 and O2 and the O2/N2 ratio. Rev. Geophys. 33:1253–62
    [Google Scholar]
  114. 114. 
    Tans PP. 1998. Oxygen isotopic equilibrium between carbon dioxide and water in soils. Tellus B 50:163–78
    [Google Scholar]
  115. 115. 
    Gillon J, Yakir D. 2001. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291:2584–87
    [Google Scholar]
  116. 116. 
    Wingate L, Ogee J, Cuntz M, Genty B, Reiter I et al. 2009. The impact of soil microorganisms on the global budget of δ18O in atmospheric CO2. PNAS 106:22411–15
    [Google Scholar]
  117. 117. 
    Welp LR, Keeling RF, Meijer HAJ, Bollenbacher AF, Piper SC et al. 2011. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature 477:579–82
    [Google Scholar]
  118. 118. 
    Liang M-C, Mahata S, Laskar AH, Thiemens MH, Newman S. 2017. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity. Sci. Rep. 7:13180
    [Google Scholar]
  119. 119. 
    Berry J, Wolf A, Campbell JE, Baker I, Blake N et al. 2013. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. Biogeosci. 118:842–52
    [Google Scholar]
  120. 120. 
    Campbell J, Carmichael G, Chai T, Mena-Carrasco M, Tang Y et al. 2008. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322:1085–88
    [Google Scholar]
  121. 121. 
    Stimler K, Berry JA, Montzka SA, Yakir D. 2011. Association between carbonyl sulfide uptake and 18Δ during gas exchange in C3 and C4 leaves. Plant Physiol 157:509–17
    [Google Scholar]
  122. 122. 
    Aydin M, Britten GL, Montzka SA, Buizert C, Primeau F et al. 2020. Anthropogenic impacts on atmospheric carbonyl sulfide since the 19th century inferred from polar firn air and ice core measurements. J. Geophys. Res. Atmos. 125:e2020JD033074
    [Google Scholar]
  123. 123. 
    Brühl C, Lelieveld J, Crutzen P, Tost H, Stier P. 2012. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys. 12:1239–53
    [Google Scholar]
  124. 124. 
    Montzka SA, Calvert P, Hall BD, Elkins JW, Conway TJ et al. 2007. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res. Atmos. 112:D09302
    [Google Scholar]
  125. 125. 
    Cuntz M, Ciais P, Hoffmann G, Allison CE, Francey RJ et al. 2003. A comprehensive global three-dimensional model of δ18O in atmospheric CO2: 2. Mapping the atmospheric signal. J. Geophys. Res. Atmos. 108:4528
    [Google Scholar]
  126. 126. 
    Campbell J, Berry J, Seibt U, Smith S, Montzka S et al. 2017. Large historical growth in global terrestrial gross primary production. Nature 544:84–87
    [Google Scholar]
  127. 127. 
    Manning AC, Keeling RF. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B. 58:95–116
    [Google Scholar]
  128. 128. 
    Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB. 1978. Biota and world carbon budget. Science 199:141–46
    [Google Scholar]
  129. 129. 
    Bolin B, Eriksson E 1959. Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. Rossby Memorial Volume B Bolin 130–42 New York: Rockefeller Inst. Press, Oxford Univ. Press
    [Google Scholar]
  130. 130. 
    Gruber N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A. 369:1980–96
    [Google Scholar]
  131. 131. 
    Landschützer P, Gruber N, Bakker D, Schuster U. 2014. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycle 28:927–49
    [Google Scholar]
  132. 132. 
    Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–38
    [Google Scholar]
  133. 133. 
    Jones C, Robertson E, Arora V, Friedlingstein P, Shevliakova E et al. 2013. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Climate 26:4398–413
    [Google Scholar]
  134. 134. 
    Jones CD, Ciais P, Davis SJ, Friedlingstein P, Gasser T et al. 2016. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:095012
    [Google Scholar]
  135. 135. 
    Wang X, Piao S, Ciais P, Friedlingstein P, Myneni RB et al. 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506:212–15
    [Google Scholar]
  136. 136. 
    Lan X, Tans P, Sweeney C, Andrews A, Jacobson A et al. 2017. Gradients of column CO2 across North America from the NOAA Global Greenhouse Gas Reference Network. Atmos. Chem. Phys. 17:15151–65
    [Google Scholar]
  137. 137. 
    Crisp D, Atlas RM, Breon F-M, Brown LR, Burrows JP et al. 2004. The orbiting carbon observatory (OCO) mission. Adv. Space Res. 34:700–9
    [Google Scholar]
  138. 138. 
    Wunch D, Wennberg P, Messerschmidt J, Parazoo N, Toon G et al. 2013. The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions. Atmos. Chem. Phys. 13:9447–59
    [Google Scholar]
  139. 139. 
    Scholze M, Buchwitz M, Dorigo W, Guanter L, Quegan S. 2017. Reviews and syntheses: systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences 14:3401–29
    [Google Scholar]
  140. 140. 
    van der Laan-Luijkx IT, van der Velde IR, van der Veen E, Tsuruta A, Stanislawska K et al. 2017. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001–2015. Geosci. Model Dev. 10:2785–800
    [Google Scholar]
  141. 141. 
    van der Velde IR, Miller JB, van der Molen MK, Tans PP, Vaughn BH et al. 2018. The CarbonTracker Data Assimilation System for CO2 and δ13C (CTDAS-C13 v1. 0): retrieving information on land-atmosphere exchange processes. Geosci. Model Dev. 11:283–304
    [Google Scholar]
  142. 142. 
    Affek H, Yakir D 2014. The stable isotopic composition of atmospheric CO2. Treatise on Geochemistry, Vol. 5: The Atmosphere RF Keeling, L Russell 179–212 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  143. 143. 
    Friedlingstein P, Prentice IC 2010. Carbon–climate feedbacks: a review of model and observation based estimates. Curr. Opin. Environ. Sustain. 2:251–57
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-125406
Loading
/content/journals/10.1146/annurev-environ-012220-125406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error