Skip to main content
Log in

High Performance Organic Coatings of Polypyrrole Embedded with Manganese Iron Oxide Nanoparticles for Corrosion Protection of Conductive Copper Surface

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, we report the formation of organic composite coating consists of epoxy (EP) reinforced para toluene sulphonic acid (PTSA) doped polypyrrole (PPy)–manganese iron oxide (MnFe2O2) as an efficient corrosion inhibitor for copper substrates. The PTSA doped PPy:MnFe2O2 nanocomposite was synthesized via in situ polymerization of PPy in the presence of MnFe2O2 nanoparticles. Structural features of the prepared samples were characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy and thermogravimetric analysis (TGA). The PTSA doped PPy:MnFe2O2 nanocomposite shows excellent conductivity and improved dielectric performance in comparison to pure PPy. The anti-corrosion performance of this organic composite coating was analyzed through Tafel polarization curves, open circuit potential (OCP), corrosion resistance, impedance spectroscopy and oxygen permeability barrier tests. The nanocomposite coating on copper substrate shows superior corrosion protection efficiency (99%) in comparison to pure epoxy (22%). Adhesion strength of the nanocomposite coating shows significant enhancement due to strong dispersions of MnFe2O2 nanoparticles in the host matrix. Owing to its improved conductivity, excellent anti-corrosion performance along with superior mechanical properties, the organic nanocomposite coating reported in this work can potentially be used to protect the conductive copper surfaces from harsh corrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A.A.M. Farag, A.M. Mansour, A.H. Ammar, M. Abdel Rafea, A.M. Farid, Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application. J. Alloys Compd. 513, 404–413 (2012)

    CAS  Google Scholar 

  2. A.M. El Nahrawy, A.B. Abou Hammad, A.M. Youssef, A.M. Mansour, A.M. Othman, Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposite. Appl. Phys. A 125, 46 (2019)

    Google Scholar 

  3. M.A. Raza, Z.U. Rehman, F.A. Ghauri, A. Ahmad, R. Ahmad, M. Raffi, Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. Thin Solid Films 620, 150–159 (2016)

    CAS  Google Scholar 

  4. S. Hou, S. Qi, D.A. Hutt, J.R. Tyrer, M. Mu, Z. Zhou, Three dimensional printed electronic devices realised by selective laser melting of copper/high-density-polyethylene powder mixtures. J. Mater. Process. Technol. 254, 310–324 (2018)

    CAS  Google Scholar 

  5. B. Duran, G.Z. Bereket, Cyclic voltametric synthesis of poly (N-methyl pyrrole) on copper and effects of polymerization parameters on corrosion performance. Ind. Eng. Chem. Res. 51, 5246–5255 (2012)

    CAS  Google Scholar 

  6. B.M. Thethwayo, A.M. Garbers-Craig, Laboratory scale investigation into the corrosion of copper in a sulphur-containing environment. Corros. Sci. 53, 3068–3074 (2011)

    CAS  Google Scholar 

  7. K. Khaled, Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study. Corros. Sci. 52, 3225–3234 (2010)

    CAS  Google Scholar 

  8. H. Huang, Z. Pan, Y. Qiu, X. Guo, Electrochemical corrosion behaviour of copper under periodic wet-dry cycle condition. Microelectron. Reliab. 53, 1149–1158 (2013)

    CAS  Google Scholar 

  9. H.S. Karmakar, R. Arukula, A. Thota, R. Narayan, C.R.K. Rao, Polyaniline-grafted polyurethane coatings for corrosion protection of mild steel surfaces. J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/APP.45806

    Article  Google Scholar 

  10. P.P. Deshpande, N.G. Jadhav, J.V. Gelling, D. Sazou, Conducting polymers for corrosion protection: a review. J. Coat. Technol. Res. 11(4), 473–494 (2014)

    CAS  Google Scholar 

  11. H. Kima, H. Leea, H.-R. Limb, H.-B. Choa, Y.-H. Choa, Electrically conductive and anti-corrosive coating on copper foil assisted by polymer-nanocomposites embedded with graphene. Appl. Surf. Sci. 476, 123–127 (2019)

    Google Scholar 

  12. M. Ates, A review on conducting polymer coatings for corrosion protection. J. Adhes. Sci. Technol. 30(14), 1510–1536 (2016)

    CAS  Google Scholar 

  13. S. Wan, C.-H. Miao, R.-M. Wang, Z.-F. Zhang, Z.-H. Dong, Enhanced corrosion resistance of copper by synergetic effects of silica and BTA co doped in polypyrrole film. Prog. Org. Coat. 129, 187–198 (2019)

    CAS  Google Scholar 

  14. N. Raghavendra, R.S. Chitnis, S.D. Sheelimath, Anti-corrosion investigation of polylysine (amino acid polymer) as efficacious corrosion inhibitor for Al in industrial acidic pickling environment. J Bio-Tribo-Corros. 7, 29 (2021)

    Google Scholar 

  15. N. Maruthi, M. Faisal, N. Raghavendra, B.P. Prasanna, S.R. Manohara, M. Revanasiddappa, Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding. Colloids Surf. A: Physicochem. Eng. Asp. 621, 126611 (2021)

    CAS  Google Scholar 

  16. S. Khasim, A. Pasha, Enhanced corrosion protection of A-36 steel using epoxy-reinforced CSA-doped polyaniline-SnO2 nanocomposite smart coatings. J. Bio-Tribo Corros. 7, 26 (2021)

    Google Scholar 

  17. N. Badi, S. Khasim, A. Pasha, M. Lakshmi, Silver nanoparticles intercalated polyaniline composites for high electrochemical anti-corrosion performance in 6061 aluminum alloy-based solar energy frameworks. J. Bio Tribo Corros. 6, 123 (2020)

    Google Scholar 

  18. T. Rajyalakshmi, A. Pasha, S. Khasim, M. Lakshmi, Enhanced charge transport and corrosion protection properties of polyaniline–carbon nanotube composite coatings on mild steel. J. Electron. Mater. 49, 341–352 (2020)

    CAS  Google Scholar 

  19. N. Velhal, G. Kulkarni, N.D. Patil, V. Puri, Structural, electrical and microwave properties of conducting polypyrrole thin films: effect of oxidant. Mater. Res. Express. 5, 106407 (2018)

    Google Scholar 

  20. R. Sutar, L. Kumari, M.V. Murugendrappa, Three-dimensional variable range hopping and thermally activated conduction mechanism of polypyrrole/zinc cobalt oxide nanocomposites. J. Phys. Chem. C 124(39), 21772–21781 (2020)

    CAS  Google Scholar 

  21. J. Stejskal, M. Trchova, Conducting polypyrrole nanotubes: a review. Chem. Pap. 72, 1563–1595 (2018)

    CAS  Google Scholar 

  22. A.L. Pang, A. Arsad, M. Ahmadipour, Synthesis and factors affecting on conductivity of polypyrrole: a short review. Polym. Adv. Technol. 32, 1428–1454 (2021)

    CAS  Google Scholar 

  23. H. Arabzadeh, M. Shahidi, M.M. Foroughi, Electrodeposited polypyrrole coatings on mild steel: modeling the EIS data with a new equivalent circuit and the influence of scan rate and cycle number on the corrosion protection. J. Electroanal. Chem. 807, 162–173 (2017)

    CAS  Google Scholar 

  24. V. Annibaldi, A.D. Rooney, C.B. Breslin, Corrosion protection of copper using polypyrrole electro synthesized from a salicylate solution. Corros. Sci. 59, 179–185 (2012)

    CAS  Google Scholar 

  25. E. Volpi, M. Trueba, S.P. Trasatti, S. Trasatti, Effect of polypyrrole conformational rearrangement on Al alloys corrosion protection. J. Electroanal. Chem. 688, 289–297 (2013)

    CAS  Google Scholar 

  26. M. Ladan, W.J. Basirun, S.N. Kazi, F.A. Rahman, Corrosion protection of AISI 1018 steel using co-doped TiO2/polypyrrole nanocomposites in 3.5% NaCl solution. Mater. Chem. Phys. 192, 361–373 (2017)

    CAS  Google Scholar 

  27. M. Hosseini, L. Fotouhi, A. Ehsani, M. Naseri, Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: potentiodynamic and electrochemical impedance spectroscopy study. J. Colloid Interface Sci. 505, 213–219 (2017)

    CAS  PubMed  Google Scholar 

  28. A.M. Kumar, R.S. Babu, S. Ramakrishna, A.L.F. de Barros, Electrochemical synthesis and surface protection of polypyrrole-CeO2 nanocomposite coatings on AA2024 alloy. Synth. Met. 234, 18–28 (2017)

    CAS  Google Scholar 

  29. Y. Chen, Z. Zhao, C. Zhang, Structural and electrochemical study of polypyrrole/ZnO nanocomposites coating on nickel sheet synthesized by electrochemical method. Synth. Met. 163, 51–56 (2013)

    CAS  Google Scholar 

  30. A. Madhan Kumar, N. Rajendran, Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants. Ceram. Int. 39, 5639–5650 (2013)

    CAS  Google Scholar 

  31. N. Jadhav, S. Kasisomayajula, V.J. Gelling, Polypyrrole/metal oxides-based composites/nanocomposites for corrosion protection. Front Mater. 7, 95 (2020)

    Google Scholar 

  32. X.J. Raj, Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing zinc oxide nanoparticles on mild steel in 3.5% NaCl solution. JMEPEG. 26, 3245–3253 (2017)

    CAS  Google Scholar 

  33. K. Jlassi, A.B. Radwan, K.K. Sadasivuni, M. Mrlik, A.M. Abdullah, M.M. Chehimi, I. Krupa, Anti-corrosive and oil sensitive coatings based on epoxy/polyaniline/magnetite-clay composites through diazonium interfacial chemistry. Sci. Rep. 8, 13369 (2018)

    PubMed  PubMed Central  Google Scholar 

  34. Y. Wang, H. Wei, J. Wang, J. Liu, J. Guo, X. Zhang, B.L. Weeks, T.D. Shen, S. Wei, Z. Guo, Electro-polymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. J. Mater. Chem. A. 3, 20778–20790 (2015)

    CAS  Google Scholar 

  35. M.A.A.M. Abdah, N.A. Rahman, Y. Sulaiman, Ternary functionalized carbon nanofibers/polypyrrole/manganese oxide as high specific energy electrode for supercapacitor. Ceram. Int. 45, 8433–8439 (2019)

    Google Scholar 

  36. S.H. Hosseini, A. Asadni, Synthesis, characterization, and microwave-absorbing properties of polypyrrole/MnFe2O4 nanocomposite. J. Nanomater. (2012). https://doi.org/10.1155/2012/198973

    Article  Google Scholar 

  37. T.N. Thi, T.D.T. Mai, N.P. Thi, P.N. Thu, V.V.T. Hai, M.N. Quang, Enhanced anti-corrosion protection of carbon steel with silica-polypyrrole-dodecyl sulfate incorporated into epoxy coating. J. Electron. Mater. 48, 6 (2019)

    Google Scholar 

  38. N. Jadhav, C.A. Vetter, V.J. Gelling, The effect of polymer morphology on the performance of a corrosion inhibiting polypyrrole/aluminum flake composite pigment. Electrochim. Acta 102, 28–34 (2013)

    CAS  Google Scholar 

  39. M. Zheng, H. Zhang, X. Gong, Xu. Ruchun, Y. Xiao, H. Dong, X. Liu, Y. Liu, A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Res. Lett. 8, 166 (2013)

    PubMed  PubMed Central  Google Scholar 

  40. M. Zhang, Yu. Zehao, Yu. Hongchao, Adsorption of Eosin Y, methyl orange and brilliant green from aqueous solution using ferroferric oxide/polypyrrole magnetic composite. Polym. Bull. 77, 1049–1066 (2020)

    CAS  Google Scholar 

  41. A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull. Mater. Sci 42, 271 (2019)

    Google Scholar 

  42. M. Irfan, A. Shakoor, Structural, electrical and dielectric properties of dodecylbenzene sulphonic acid doped polypyrrole/nano-Y2O3 composites. J. Inorg. Organomet. Polym. 30, 1287–1292 (2020)

    CAS  Google Scholar 

  43. M. Lakshmi, A.S. Roy, A. Parveen, O.A. Al-Hartomy, S. Khasim, Synthesis, characterization, and dielectric studies of ortho-chloropolyaniline–graphite oxide composites. J. Mater. Res. 30, 15 (2015)

    Google Scholar 

  44. H. Ashassi-Sorkhabi, A. Kazempour, Incorporation of organic/inorganic materials into polypyrrole matrix to reinforce its anticorrosive properties for the protection of steel alloys: a review. J. Mol. Liq. 309, 113085 (2020)

    CAS  Google Scholar 

  45. Z. Chen, L. Huang, G. Zhang, Y. Qiu, X. Guo, Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers. Corros. Sci. 65, 214–222 (2012)

    CAS  Google Scholar 

  46. X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang, C. Cao, Corrosion behavior of copper under chloride-containing thin electrolyte layer. Corros. Sci. 53, 3289–3298 (2011)

    CAS  Google Scholar 

  47. S. Pourhashem, F. Saba, J. Duan, A. Rashidi, F. Guan, E.G. Nezhad, B. Hou, Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: a review. J. Ind. Eng. Chem. 88(25), 29–57 (2020)

    CAS  Google Scholar 

  48. B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surf. Coat. Technol. 232(15), 475–481 (2013)

    CAS  Google Scholar 

  49. L. Bazli, M. Yusuf, Application of composite conducting polymers for improving the corrosion behavior of various substrates: a review. J. Compos. Compd. 2(5), 228–240 (2020)

    Google Scholar 

  50. S. Pourhashem, M.R. Vaezi, A. Rashidi, Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros. Sci. 115, 78–92 (2017)

    CAS  Google Scholar 

  51. D. Sarkar, N.D. Gupta, N.S. Das, S. Das, Improvement of adhesion and continuity of polypyrrole thin films through surface modification of hydrophobic substrates. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.39771

    Article  Google Scholar 

  52. Z. Chen, W. Yanga, B. Xub, Y. Guo, Y. Chen, X. Yin, Y. Liu, Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel. Prog. Org. Coat. 122, 159–169 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AP: Conceptualization, Methodology, Experimentation, writing.: SK: Conceptualization, Methodology, Experimentation, Writing final Draft.: AAAD: Analysis of Materials Characterization and Electric properties.: TAH: Analysis of Materials Characterization, Electric properties.: S.AA-G: Experimental finding, analysis of Dielectric and Impedance spectroscopy.

Corresponding authors

Correspondence to Apsar Pasha or Syed Khasim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing or financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, A., Khasim, S., Darwish, A.A.A. et al. High Performance Organic Coatings of Polypyrrole Embedded with Manganese Iron Oxide Nanoparticles for Corrosion Protection of Conductive Copper Surface. J Inorg Organomet Polym 32, 499–512 (2022). https://doi.org/10.1007/s10904-021-02130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02130-x

Keywords

Navigation