Skip to main content
Log in

Steady-state ballistic thermal transport associated with transversal motions in a damped graphene lattice subjected to a point heat source

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the paper, we deal with ballistic heat transport in a graphene lattice subjected to a point heat source. It is assumed that a graphene sheet is suspended under tension in a viscous gas. We use the model of a harmonic polyatomic (more exactly diatomic) lattice performing out-of-plane motions. The dynamics of the lattice is described by an infinite system of stochastic ordinary differential equations with white noise in the right-hand side, which models the point heat source. On the basis of the previous analytical unsteady analysis, an analytical formula in continuum approximation is suggested, which allows one to describe a steady-state kinetic temperature distribution in the graphene lattice in continuum approximation. The obtained solution is in a good agreement with numerical results obtained for the discrete system everywhere excepting a neighbourhood of six singular rays with the origin at the heat source location. The continuum solution becomes singular at these rays, unlike the discrete one, which appears to be localized in a certain sense along the rays. The factors, which cause such a directional localization and the mismatch between the continuum and discrete solutions, are discussed. We expect that the suggested formula is applicable for various damped polyatomic lattices where all particles have equal masses in the case of universal for all particles external viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. To describe such sources, one needs to formulate a problem for a system of stochastic ordinary differential equations.

  2. \(a\simeq 0.142\) nm for real graphene lattice [35].

  3. Everywhere, excluding the singular rays in the case when the steady-state solution is considered, see Sect. 6.

  4. Kuzkin actually considered a more general problem formulation: the external random excitation is not assumed to be equal for all particles in a cell (Eq. (3.16) generally is not assumed to be true), and the masses of the particles inside a cell are also not assumed to be equal.

  5. This is the last formula in Eq. (30) [30] (with the simplification discussed in Remark 5 of the present paper).

  6. Note that in the case of a primitive rhombic scalar lattice (in particular for a square lattice) the singular rays also exist and correspond to \(\alpha \in \left\{ -\frac{\pi }{2},0,\frac{\pi }{2}\right\} =0\), see [14].

  7. Excluding the points, where \({{\mathbf {g}}}_\pm =\mathbf{0}\) and the corresponding direction is undefined, which are shown as the green boxes.

  8. The non-stationary solution is almost vanishes outside the circle with radius \(g_{\mathrm {max}}t\) with centre at the point source location, where \(g_{\mathrm {max}}\simeq 0.897\omega _*a\) [30] is the maximum magnitude for the vectors \({{\mathbf {g}}}_\pm \).

References

  1. Abdukadirov, S., Ayzenberg-Stepanenko, M., Osharovich, G.: Resonant waves and localization phenomena in lattices. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 377(2156), 20190110 (2019). https://doi.org/10.1098/rsta.2019.0110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ayzenberg-Stepanenko, M., Slepyan, L.: Resonant-frequency primitive waveforms and star waves in lattices. J. Sound Vib. 313(3), 812–821 (2008). https://doi.org/10.1016/j.jsv.2007.11.047

    Article  ADS  Google Scholar 

  3. Bae, M.H., Li, Z., Aksamija, Z., Martin, P., Xiong, F., Ong, Z.Y., Knezevic, I., Pop, E.: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4(1), 1734 (2013). https://doi.org/10.1038/ncomms2755

    Article  ADS  Google Scholar 

  4. Berinskii, I., Borodich, F.: On the isotropic elastic properties of graphene crystal lattice. In: H. Altenbach, N. Morozov (eds.) Surface Effects in Solid Mechanics, Advanced Structured Materials, vol. 30, pp. 33–42. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35783-1_3

  5. Berinskii, I., Kuzkin, V.A.: Equilibration of energies in a two-dimensional harmonic graphene lattice. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 378(2162), 20190114 (2020). https://doi.org/10.1098/rsta.2019.0114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dhar, A., Dandekar, R.: Heat transport and current fluctuations in harmonic crystals. Physica A 418, 49–64 (2015). https://doi.org/10.1016/j.physa.2014.06.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cython: C-extensions for Python. https://cython.org. Accessed 1 June 2021

  8. Fedoryuk, M.: The Saddle-Point Method. Nauka, Moscow (1977). (In Russian)

  9. Ferretti, M., Gavrilov, S.N., Eremeyev, V.A., Luongo, A.: Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass. Nonlinear Dyn. 97(4), 2201–2218 (2019). https://doi.org/10.1007/s11071-019-05117-z

    Article  MATH  Google Scholar 

  10. Ferretti, M., Piccardo, G., dell’Isola, F., Luongo, A.: Dynamics of taut strings undergoing large changes of tension caused by a force-driven traveling mass. J. Sound Vib. 458, 320–333 (2019). https://doi.org/10.1016/j.jsv.2019.06.035

  11. Fu, H.: Anisotropy affects the lattice waves and phonon distributions in GaAs. Eur. Phys. J. B 93(10), 199 (2020). https://doi.org/10.1140/epjb/e2020-10255-6

    Article  ADS  Google Scholar 

  12. Gavrilov, S.: Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mech. 154, 47–60 (2002). https://doi.org/10.1007/BF01170698

    Article  MATH  Google Scholar 

  13. Gavrilov, S.: Heat conduction in 1D harmonic crystal: discrete-to-continuum limit and slow-and-fast motions decoupling. arXiv:2006.08197 (2020)

  14. Gavrilov, S., Krivtsov, A.: Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Cont. Mech. Thermodyn. 32(1), 41–61 (2020). https://doi.org/10.1007/s00161-019-00782-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Gavrilov, S., Krivtsov, A., Tsvetkov, D.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Cont. Mech. Thermodyn. 31, 255–272 (2019). https://doi.org/10.1007/s00161-018-0681-3

    Article  MathSciNet  Google Scholar 

  16. Gavrilov, S.N., Eremeyev, V.A., Piccardo, G., Luongo, A.: A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dyn. 86(4), 2245–2260 (2016). https://doi.org/10.1007/s11071-016-3080-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Gavrilov, S.N., Krivtsov, A.M.: Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E 100(2), 022117 (2019). https://doi.org/10.1103/PhysRevE.100.022117

    Article  ADS  Google Scholar 

  18. Gel’fand, I., Shilov, G.: Generalized Functions. Volume I: Properties and Operations. Academic Press, New York (1964)

  19. Giannoulis, J., Herrmann, M., Mielke, A.: Continuum descriptions for the dynamics in discrete lattices: derivation and justification. In: A. Mielke (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 435–466. Springer (2006). https://doi.org/10.1007/3-540-35657-6_16

  20. Harris, L., Lukkarinen, J., Teufel, S., Theil, F.: Energy transport by acoustic modes of harmonic lattices. SIAM J. Math. Anal. 40(4), 1392–1418 (2008). https://doi.org/10.1137/070699184

    Article  MathSciNet  MATH  Google Scholar 

  21. Hemmer, P.: Dynamic and Stochastic Types of Motion in the Linear Chain. Norges tekniske høgskole, Trondheim (1959)

    Google Scholar 

  22. Ishibashi, Y., Iwata, M.: Dispersion relations near the conical point in some hexagonal lattices. Ferroelectrics 459(1), 107–111 (2014). https://doi.org/10.1080/00150193.2013.849172

    Article  Google Scholar 

  23. Klein, G., Prigogine, I.: Sur la mecanique statistique des phenomenes irreversibles III. Physica 19(1–12), 1053–1071 (1953). https://doi.org/10.1016/S0031-8914(53)80120-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kosevich, A.: The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices. Wiley-VCH, Berlin, New-York (2005). https://doi.org/10.1002/352760667X

  25. Krivtsov, A.: Energy oscillations in a one-dimensional crystal. Doklady Phys. 59(9), 427–430 (2014). https://doi.org/10.1134/S1028335814090080

    Article  Google Scholar 

  26. Krivtsov, A.: Heat transfer in infinite harmonic one-dimensional crystals. Doklady Phys. 60(9), 407–411 (2015). https://doi.org/10.1134/S1028335815090062

    Article  ADS  Google Scholar 

  27. Kunin, I.: Elastic Media with Microstructure I: One-Dimensional Models. Springer-Verlag, Berlin Heidelberg (1982). https://doi.org/10.1007/978-3-642-81748-9

  28. Kuptsov, L.: Einstein rule. In: Encyclopedia of Mathematics. EMS Press (2001). https://encyclopediaofmath.org/index.php?title=Einstein_rule. Accessed 1 June 2021

  29. Kuzkin, V.: Thermal equilibration in infinite harmonic crystals. Cont. Mech. Thermodyn. 31(5), 1401–1423 (2019). https://doi.org/10.1007/s00161-019-00758-2

    Article  MathSciNet  Google Scholar 

  30. Kuzkin, V.: Unsteady ballistic heat transport in harmonic crystals with polyatomic unit cell. Cont. Mech. Thermodyn. 31(6), 1573–1599 (2019). https://doi.org/10.1007/s00161-019-00802-1

    Article  MathSciNet  Google Scholar 

  31. Kuzkin, V., Krivtsov, A.: Fast and slow thermal processes in harmonic scalar lattices. J. Phys. Conden. Matter 29(50), 505401 (2017). https://doi.org/10.1088/1361-648X/aa98eb

    Article  Google Scholar 

  32. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003). https://doi.org/10.1016/S0370-1573(02)00558-6

    Article  ADS  MathSciNet  Google Scholar 

  33. Maris, H.: Enhancement of heat pulses in crystals due to elastic anisotropy. J. Acoust. Soc. Am. 50, 812–818 (1971). https://doi.org/10.1121/1.1912705

    Article  ADS  Google Scholar 

  34. Mielke, A.: Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms. Arch. Rat. Mech. Anal. 181(3), 401–448 (2006). https://doi.org/10.1007/s00205-005-0405-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Nika, D., Balandin, A.: Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 80(3), 036502 (2017). https://doi.org/10.1088/1361-6633/80/3/036502

    Article  ADS  Google Scholar 

  36. Northrop, G., Wolfe, J.: Ballistic phonon imaging in solids—a new look at phonon focusing. Phys. Rev. Lett. 43(19), 1424–1427 (1979). https://doi.org/10.1103/PhysRevLett.43.1424

    Article  ADS  Google Scholar 

  37. Northrop, G., Wolfe, J.: Ballistic phonon imaging in germanium. Phys. Rev. B 22(12), 6196–6212 (1980). https://doi.org/10.1103/PhysRevB.22.6196

    Article  ADS  Google Scholar 

  38. Rieder, Z., Lebowitz, J., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967). https://doi.org/10.1063/1.1705319

    Article  ADS  Google Scholar 

  39. Savin, A., Zolotarevskiy, V., Gendelman, O.: Normal heat conductivity in two-dimensional scalar lattices. Europhys. Lett. 113(2), 24003 (2016). https://doi.org/10.1209/0295-5075/113/24003

    Article  ADS  Google Scholar 

  40. Scuracchio, P., Costamagna, S., Peeters, F., Dobry, A.: Role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons. Phys. Rev. B 90(3), 035429 (2014). https://doi.org/10.1103/PhysRevB.90.035429

    Article  ADS  Google Scholar 

  41. Serov, A., Ong, Z.Y., Pop, E.: Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102(3), 033104 (2013). https://doi.org/10.1063/1.4776667

    Article  ADS  Google Scholar 

  42. Sfyris, D., Sfyris, G.I., Galiotis, C.: Curvature dependent surface energy for a free standing monolayer graphene: Some closed form solutions of the non-linear theory. Int. J. Non-Linear Mech. 67, 186–197 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.09.005

    Article  ADS  MATH  Google Scholar 

  43. Sfyris, D., Sfyris, G.I., Galiotis, C.: Curvature dependent surface energy for free standing monolayer graphene: geometrical and material linearization with closed form solutions. Int. J. Eng. Sci. 85, 224–233 (2014). https://doi.org/10.1016/j.ijengsci.2014.08.007

    Article  MATH  Google Scholar 

  44. Slepyan, L., Tsareva, O.: Energy flux for zero group velocity of the carrier wave. Sov. Phys. Doklady 32, 522–526 (1987)

    ADS  MATH  Google Scholar 

  45. Sokolov, A., Müller, W., Porubov, A., Gavrilov, S.: Heat conduction in 1D harmonic crystal: discrete and continuum approaches. Int. J. Heat Mass Transf. 176, 121442 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121442

    Article  Google Scholar 

  46. Stepanov, S.: Stochastic World. Springer, New York (2013). https://doi.org/10.1007/978-3-319-00071-8

  47. Temme, N.: Asymptotic methods for integrals. World Sci. (2014). https://doi.org/10.1142/9195

  48. Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    MATH  Google Scholar 

  49. Wolfe, J.: Imaging Phonons: Acoustic Wave Propagation in Solids. Cambridge University Press (1998). https://doi.org/10.1017/CBO9780511665424

  50. Xu, X., Pereira, L.C., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., B., T., Xie, R., Thong, J., Hong, B., Loh, K., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5(1), 3689 (2014). https://doi.org/10.1038/ncomms4689

  51. Zhilin, P.: Vectors and Second-Rank Tensors in Three-Dimensional Space. Nestor, Saint-Petersburg (2001) (in Russian)

Download references

Acknowledgements

The authors are grateful to A. T. Ivaschenko, V. A. Kuzkin, O. V. Gendelman, A. Politi, E. V. Shishkina, A. A. Sokolov for useful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge N. Gavrilov.

Ethics declarations

This work is supported by Russian Science Support Foundation (Grant No. 21-11-00378).

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The dispersion surfaces and the group velocities for graphene lattice

Appendix A: The dispersion surfaces and the group velocities for graphene lattice

Consider Eqs. (3.6) and (3.7) in the absence of dissipation (\(\eta =0\)) and of the noise term in the right-hand side (\(b_0=0\)):

$$\begin{aligned} m\partial _t^2{{\varvec{u}}}(\breve{\mathbf{x}}) +{\varvec{C}}_0 {\varvec{u}}(\breve{\mathbf{x}}) +\sum _{i=1}^{Q/2} \left( {\varvec{C}}_1 {\varvec{u}}(\breve{\mathbf{x}}+\mathbf{b}_i) +{\varvec{C}}_1^\top {\varvec{u}}(\breve{\mathbf{x}}-\mathbf{b}_i) \right) = \mathbf{0}. \end{aligned}$$
(A.1)

Let

$$\begin{aligned} {\varvec{u}}(\breve{\mathbf{x}})={\varvec{U}}\exp (-\mathrm {i}\mathbf{p}\cdot \breve{\mathbf{x}}-\mathrm {i}\omega t). \end{aligned}$$
(A.2)

Provided that \(\omega \) satisfies the dispersion relations

$$\begin{aligned} \omega =\omega _\pm (p_1,p_2), \end{aligned}$$
(A.3)

the right-hand side of Eq. (A.2) is the solution of Eq. (A.1). Here

$$\begin{aligned} \mathbf{p}=p_\gamma \mathbf{b}^\gamma \end{aligned}$$
(A.4)

is the wave vector, \(\mathbf{b}^\gamma \) is the dual basis defined by Eq. (4.9).

The dispersion relations for graphene lattice are found in [1, 22, 29]:

$$\begin{aligned}&\omega _\pm ^2=\omega _*^2(3\pm R(p_1,p_2)), \end{aligned}$$
(A.5)
$$\begin{aligned}&\quad R(p_1,p_2)=\sqrt{3+2(\cos p_1 +\cos p_2 +\cos (p_1-p_2) )}, \end{aligned}$$
(A.6)
$$\begin{aligned}&\quad \omega _*^2=\frac{C}{m}. \end{aligned}$$
(A.7)

The plot of the dispersion surfaces is shown in Fig. 9.

Fig. 9
figure 9

Acoustic \(\omega _-(p_1,p_2)\) and optic \(\omega _+(p_1,p_2)\) dispersion surfaces (\(\omega _*=1\))

The vectors of the group velocities are

$$\begin{aligned}&\displaystyle {{{\mathbf {g}}}}_\pm = \frac{\partial \omega _\pm }{\partial \mathbf{p}} = \frac{\partial \omega _\pm {}}{\partial p_\gamma }\mathbf{b}_\gamma , \end{aligned}$$
(A.8)
$$\begin{aligned}&\displaystyle \quad g^1_\pm =\frac{\partial \omega _\pm }{\partial p_1} =\mp \frac{\omega _*^2(\sin p_1+\sin (p_1-p_2))}{2\omega _\pm R}, \end{aligned}$$
(A.9)
$$\begin{aligned}&\displaystyle \quad g^2_\pm =\frac{\partial \omega _\pm }{\partial p_2} =\mp \frac{\omega _*^2(\sin p_2-\sin (p_1-p_2))}{2\omega _\pm R}, \end{aligned}$$
(A.10)
$$\begin{aligned}&\displaystyle \quad {{\mathbf {g}}}_\pm =\mp \frac{\sqrt{3}c\big ( (2\sin (p_1-p_2)+\sin p_1-\sin p_2)\mathbf{e}_1 +\sqrt{3}(\sin p_1+\sin p_2)\mathbf{e}_2 \big )}{4R\sqrt{3\pm R}}. \end{aligned}$$
(A.11)

Here

$$\begin{aligned} c=\omega _*a \end{aligned}$$
(A.12)

is a characteristic speed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.N., Krivtsov, A.M. Steady-state ballistic thermal transport associated with transversal motions in a damped graphene lattice subjected to a point heat source. Continuum Mech. Thermodyn. 34, 297–319 (2022). https://doi.org/10.1007/s00161-021-01059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01059-3

Keywords

Navigation