Skip to main content

Advertisement

Log in

Green Manuring for Low-input Irrigated Maize Cultivation as an Energy Crop in Mediterranean Climates

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstracts

Introduction of high input crops to existing rotation schemes for bio-energy production such as corn in Mediterranean areas would only be possible by improving its yield and decreasing the cultivation costs. This work focusses on the combined effect of irrigation rate and green manuring on growth and productivity of irrigated corn grown in typical Mediterranean lowland. On a flat, calcareous clay-loam soil, a three-year field experiment was conducted. Pisum sativum was sown in specific plots every year in November and grew as cover crop under rainfed conditions until mid-April where its biomass was incorporated into the soil, while maize was sown by the end of April. A 3 × 2 factorial split-plot design was used in 3 blocks. Corn irrigation comprised the main plots and pea incorporation comprised the sub-plots. Soil moisture was monitored at weakly intervals at 10 layers of 10 cm each down to 1 m soil depth. Corn growth and final yield were monitored by means of distracting samplings. The overall conclusion is the significant positive effect of green manuring on corn biomass and seed yield. This effect was mainly attributed to greater water use efficiency as green manuring was associated with greater moisture content within the rooting zone compared to control plots. The increased yield obtained could offset the increased costs of growing pea as green manure (increase in farmers’ income of 20–110 € ha−1), allowing green manuring to become more widely used to reduce fertilization and irrigation inputs while also allowing corn to be introduced into current crop rotations for bio-energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure: Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118, 173–182.

    Article  CAS  Google Scholar 

  • Angus, J. F., Kirkegaard, J. A., Hunt, J. R., Ryan, M. H., Ohlander, L., & Peoples, M. B. (2015). Break crops and rotations for wheat. Crop Pasture Science, 66, 523–552.

    Article  Google Scholar 

  • Arcand, M. M., Knight, J. D., & Farrell, R. E. (2013). Estimating belowground nitrogen inputs of pea and canola and their contribution to soil inorganic N pools using 15N labeling. Plant and Soil, 371, 67–80.

    Article  CAS  Google Scholar 

  • Arcand, M. M., Knight, J. D., & Farrell, R. E. (2014). Differentiating between the supply of N to wheat from above and belowground residues of preceding crops of pea and canola. Biology and Fertility of Soils, 50, 563–570.

    Article  CAS  Google Scholar 

  • Askegaard, M., & Eriksen, J. (2007). Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand. Journal of Plant Nutrition and Soil Science, 170(6), 773–780.

    Article  CAS  Google Scholar 

  • Banković-Ilić, I. B., Stamenković, O. S., & Veljković, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16, 3621–3647.

    Article  CAS  Google Scholar 

  • Blandino, M., Alfieri, M., Giordano, D., Vanar, F., & Redaelli, R. (2017). Distribution of bioactive compounds in maize fractions obtained in two different types of large-scale milling processes. Journal of Cereal Science, 77, 251–258.

    Article  CAS  Google Scholar 

  • Boels, D., van den Akker, J. J. H., Dijkhuis, J. E., Duijn, R., Harmsen, J., Kampf, R., Ma W., van der Toorn, A., Vermeulen, G. D., & Van der Waarde, J. J. (1999). Kwaliteitsverbetering van baggerspecie op basis van extensieve biorestauratie in combinatie met energieteelt. Gouda, CUR/NOBIS, NOBIS rapport 96–1–02.

  • Bottinelli, N., Jouquet, P., Capowiez, Y., Podwojewski, P., Grimaldi, M., & Peng, X. (2015). Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil & Tillage Research, 146, 118–124.

    Article  Google Scholar 

  • Bunemann, E. K., Bossio, D. A., Smithson, P. C., Frossard, E., & Oberson, A. (2004). Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biology and Biochemistry, 36, 889–901.

    Article  CAS  Google Scholar 

  • Chimonyo, V. G. P., Snapp, S. S., & Chikowo, R. (2019). Grain legumes increase yield stability in maize based cropping systems. Crop Science, 59(3), 1222–1235.

    Article  Google Scholar 

  • Claassen, M. M., & Shaw, R. H. (1970). Water deficit effects on corn. I. Grain Components. Agronomy Journal, 62, 652–655.

    Article  Google Scholar 

  • Cooper, J., Reed, E. Y., Hörtenhuber, S., Lindenthal, T., Løes, A. K., Mäder, P., Magid, J., Oberson, A., Kolbe, H., & Möller, K. (2018). Phosphorus availability on many organically managed farms in Europe. Nutrient Cycling in Agroecosystems, 110, 227–239.

    Article  CAS  Google Scholar 

  • Dania, S. O., Fagbola, O., & Alabi, R. A. (2014). The yield and farmer’s economic advantage of maize—pigeon pea intercrop as affected by the application of organic base fertilizer. European Scientific Journal, 10(25), 357–374.

    Google Scholar 

  • Daryanto, S., Fu, B., Zhao, W., Wang, S., Jacinthe, P. A., & Wang, L. (2019). Ecosystem service provision of grain legume and cereal intercropping in Africa. Agricultural Systems, 178, 102761.

    Article  Google Scholar 

  • Doorenbos, J., & Kassam, A. H. (1979). Yield response to water. FAO Irrigation and Drainage (33, pp. 193).

  • Doorenbos, J., & Pruitt, W. O. (1979). Guidelines for predicting crop water requirements. FAO Irrigation and Drainage (24).

  • Eckert, C. T., Frigo, E. P., Albrecht, L. P., Albrecht, A. J. P., Christ, D., Santos, W. G., Berkembrock, E., & Egewarth, V. A. (2018). Maize ethanol production in Brazil: Characteristics and perspectives. Renewable and Sustainable Energy Reviews, 82(3), 3907–3912.

    Article  Google Scholar 

  • Egbe, M. O., & Idoko, J. A. (2012). Evaluation of pigeon-pea genotypes for inter-cropping with maize and sorghum in Southern Guinea Savanna: Economic benefits. International Journal of Agriculture, 2(1), 108–114.

    Google Scholar 

  • Ertek, A., & Kara, B. (2013). Yield and quality of sweet corn under deficit irrigation. Agricultural Water Management, 129, 138–144.

    Article  Google Scholar 

  • Ewing, M., Bathgate, A., French, R., & Revell, C. (1992). The role of crop and pasture legumes in rotations on duplex soils. Australian Journal of Experimental Agriculture, 32, 971–979.

    Article  Google Scholar 

  • Feeney, D. S., Crawford, J. W., Daniell, T., Hallett, P. D., Nunan, N., Ritz, K., Rivers, M., & Young, I. M. (2006). Three-dimensional microorganization of the soil-root-microbe system. Microbial Ecology, 52, 151–158.

    Article  PubMed  Google Scholar 

  • Fustec, J., Lesuffleur, F., Mahieu, S., & Cliquet, J. B. (2010). Nitrogen rhizodeposition of legumes. A Review. Agronomy for Sustainable Development, 30, 57–66.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In Methods of soil analysis, part 1: Physical and mineralogical methods. In A. Klute. (ed., 383–411). Madison, Wisc: ASA and SSSA.

  • Graß, R., Heuser, F., Stülpnagel, R., Piepho, H. P., & Wachendorf, M. (2013). Energy crop production in double-cropping systems: Results from an experiment at seven sites. European Journal of Agronomy, 51, 120–129.

    Article  Google Scholar 

  • Griffin, T., Liebman, M., & Jemison, J. (2000). Cover crops for sweet corn production in a short-season environment. Agronomy Journal, 92, 144.

    Article  Google Scholar 

  • Gwenambira-Mwika, C. P., Snapp, S. S., & Chikowo, R. (2021). Broadening farmer options through legume rotational and intercrop diversity in maize-based cropping systems of central Malawi. Field Crops Research, 270, 108225.

    Article  Google Scholar 

  • Hardarson, G., Golbs, M., & Danso' S. K. A. (1989). Nitrogen fixation in soybean (Glycine max L. Merrill) as affected by nodulation patterns. Soil Biology and Biochemistry, 2l, 783–787.

  • Hauggaard-Nielsen, H., Mundus, S., & Jensen, E. T. (2012). Grass-clover under sowing affects nitrogen dynamics in a grain legume-cereal arable cropping system. Field Crops Research, 136, 23–31.

    Article  Google Scholar 

  • Herridge, D. F. (2008). Inoculation technology for legumes. In M. J. Dilworth, E. K. James, J. I. Sprent, & W. E. Newton (Eds.), Nitrogen-fixing Leguminous Symbioses (pp. 77–115). Springer.

    Google Scholar 

  • Jensen, E. S. (1997). The Role of Grain Legume N2 Fixation in the Nitrogen Cycling of Temperate Cropping Systems. Roskilde, Risoe National Laboratory.

  • Karyoti, Aik. (2020). Quantitative analysis of the effect of green manure on the efficiency of water use and application in corn cultivation in Thessaly plain. Laboratory of Agronomy and Applied Plant Physiology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece. PhD Thesis (in Greek).

  • Kimaro, A. A., Timmer, V. R., Chamshama, S. A. O., Ngaga, Y. N., & Kimaro, D. A. (2009). Competition between maize and pigeon-pea in semi-arid Tanzania: Effect on yields and nutrition of crops. Agriculture, Ecosystems & Environment, 134, 115–125.

    Article  CAS  Google Scholar 

  • Kirkegaard, J., Christen, O., Krupinsky, J., & Layzell, D. (2008). Break crop benefits in temperate wheat production. Field Crops Research, 107, 185–195.

    Article  Google Scholar 

  • Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F., & Van Kessel, C. (2005). The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal, 69, 1078–1085.

    Article  CAS  Google Scholar 

  • Lashkari, M., Madani, H., Ardakani, M. R., Golzardi, F., & Zargari, K. (2011). Effect of plant density on yield and yield components of different corn (Zea mays L.) hybrids. Journal of Agriculture and Environmental Sciences, 10, 450–457.

    Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1969). Equilibrium relationships of Zn2+, Fe3+, Ca2+ and H+ with EDTA and DTPA in soils. Soil Science Society of America Journal, 33, 62–70.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., & Schlenker, W. (2013). The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3, 497.

    Article  Google Scholar 

  • Lopez-Bellido, L., Lopez-Bellido, R. J., Redondo, R., & Benitez, J. (2006). Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions: Effect of tillage system. Field Crops Research, 98, 253–260.

    Article  Google Scholar 

  • Lupwayi, N. Z., Kennedy, A. C., & Chirwa, R. M. (2011). Grain legume impacts on soil biological processes in sub-Saharan Africa. African Journal of Plant Science, 5, 1–7.

    Google Scholar 

  • Manzoni, S., Jackson, R. B., Trofymow, J. A., & Porporato, A. (2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684–686.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, J., Buegger, F., Jensen, E. S., Schloter, M., & Heί, J. (2004). Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues. Biology and Fertility of Soils, 39, 153–164.

    Article  CAS  Google Scholar 

  • McCallum, M. H., Peoples, M. B., & Connor, D. J. (2000). Contributions of nitrogen by field pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.)-based pasture ley in the Victorian Wimmera. Australian Journal of Agricultural Research, 51, 13–22.

    Article  Google Scholar 

  • Möller, K., & Reents, H. J. (2009). Effects of various cover crops after peas on nitrate leaching and nitrogen supply to succeeding winter wheat or potato crops. Journal of Plant Nutrition and Soil Science, 172, 277–287.

    Article  CAS  Google Scholar 

  • Monti, M., Pellicanò, A., Pristeri, A., Badagliacca, G., Preiti, G., & Gelsomino, A. (2019). Cereal/grain legume intercropping in rotation with durum wheat in crop/livestock production systems for Mediterranean farming system. Field Crops Research, 240, 23–33.

    Article  Google Scholar 

  • Myaka, F. M., Sakala, W. D., Adu-Gyamfi, J. J., Kamalongo, D., Ngwira, A., Odgaard, R., Nielsen, N. E., & Hogh-Jensen, H. (2006). Yields and accumulations of N and P in farmer managed intercrops of maize-pigeon-pea in semi-arid Africa. Plant and Soil, 285, 207–220.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In Methods of soil analysis, part 2: Chemical and microbiological properties, ed. A. -L. Page et al. 539–579. Madison, Wisc.: ASA and SSSA.

  • Nicolardot, B., Recous, S., & Mary, B. (2001). Simulation of C and N mineralization during crop residue decomposition: A simple dynamic model based on the C: N ratio of the residues. Plant and Soil, 228, 83–103.

    Article  CAS  Google Scholar 

  • Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: A paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 9, 417–436.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. page et al. (ed) Methods of soil analisis, 2nd ed. Agronomy, 9, 403–430.

  • Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., Boddey, R. M., Dakora, F. D., Bhattarai, S., Maskey, S. L., Sampet, C., Rerkasem, B., Khan, D. F., Hauggaard-Nielsen, H., & Jensen, E. S. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 48, 1–17.

    Article  CAS  Google Scholar 

  • Preissel, S., Reckling, M., Schläfke, N., & Zander, P. (2015). Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Research, 175, 64–79.

    Article  Google Scholar 

  • Reckling, M., Bergkvist, G., Watson, C. A., Stoddard, F. L., Zander, P. M., Walker, R., Pristeri, A., Toncea, I., & Bachinger, J. (2016). Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Frontiers in Plant Science, 7.

  • Rhoades, J.D., (1982). Cation exchange capacity. In: Methods of soil analysis. Part 2. Chemical and Microbiological Properties (A.L. Page, R.H. Miller and D.R. Keeney), (Eds.) American Society of Agronomy, Inc. Soil Science Society of America (pp: 149–157Inc). Madison, Wisconsin.

  • Robertson, M. J., Lawes, R. A., Bathgate, A., Byrne, F., White, P., & Sands, R. (2010). Determinants of the proportion of break crops on Western Australian broadacre farms. Crop and Pasture Science, 61, 203–213.

    Article  Google Scholar 

  • Rodriguez, C., Carlsson, G., Englund, J. E., Flöhr, A., Pelzer, E., Jeuffroy, M. H., Makowski, D., & Jensen, E. S. (2020). Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. European Journal of Agronomy, 111, 126077.

    Article  CAS  Google Scholar 

  • Rosegrant, M. R., Ringler, C., Sulser, T. B., Ewing, M., Palazzo, A., Zhu, T., Nelson, G. C., Koo, J., Robertson, R., Msangi, S., & Batka, M. (2009). Agriculture and Food Security Under Global Change: Prospects for 2025/2050. IFPRI.

    Google Scholar 

  • Sauvadet, M., Chauvat, M., Fanina, N., Coulibaly, S., & Bertrand, I. (2016). Comparing the effects of litter quantity and quality on soil biota structure and functioning: Application to a cultivated soil in Northern France. Applied Soil Ecology, 107, 261–271.

    Article  Google Scholar 

  • Schittenhelm, S., & Schroetter, S. (2014). Comparison of Drought Tolerance of Maize, Sweet Sorghum and Sorghum-Sudangrass Hybrids. Journal of Agronomy and Crop Science, 46–53.

  • Schumacher, B., Böhmel, C., & Oechsner, H. (2006). Which Energy Maize Varieties when to Harvest for Biogas Production? Landtechnik. Agricultural Engineering, 61, 84–85.

    Google Scholar 

  • Semenov, M. A., Stratonovitch, P., Alghabari, F., & Gooding, M. J. (2014). Adapting wheat in Europe for climate change. Journal of Cereal Science, 59, 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F., & French, R. J. (2012). Break-crop benefits to wheat in Western Australia – insights from over three decades of research. Crop and Pasture Science, 63, 1–16.

    Article  Google Scholar 

  • Sharma, S., Agarwal, N., & Verma, P. (2011). Pigeon pea (Cajanus cajan L.): a hidden treasure of regime nutrition. Journal of Functional and Environmental Botany, 1(2), 91–101.

    Article  Google Scholar 

  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macro aggregate turnover and micro aggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32, 2099–2103.

    Article  CAS  Google Scholar 

  • Skoufogianni, E. (2013). Pea rotation (Pisum sativum L.) with sunflower (Helianthus annuus L.) and maize (Zea mays L.) as energy crops: Effect of soil improvement on productivity and sustainability in the Eastern and Western Thessaly plains. PhD Thesis, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece.

  • Skoufogianni, E., Solomou, A., Charvalas, G., & Danalatos, N. (2019). Maize as Energy Crop. In: Akbar Hossain, Maize—Production and Use (pp. 1–16), Intech Open: London, UK.

  • Soon, Y. K., & Arshad, M. A. (2002). Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues. Biology and Fertility of Soils, 36, 10–17.

    Article  CAS  Google Scholar 

  • Steel, R.G.D. & Torrie, J.H. (1982). Principles and Procedures of Statistics. A Biometrical Approach (2nded., pp. 131) McGraw-Hill.

  • Stevenson, F. C., & van Kessell, C. (1996). The nitrogen and non nitrogen rotation benefits of pea to succeeding crops. Canadian Journal of Plant Science, 76, 735–745.

    Article  Google Scholar 

  • Tully, K. L., Wood, S. A., Almaraz, M., Neill, C., & Palm, C. (2015). The effect of mineral and organic nutrient input on yields and nitrogen balances in western Kenya. Agriculture, Ecosystems and Environment, 214, 10–20.

    Article  CAS  Google Scholar 

  • Turpin, J. E., Robertson, M. J., Hillcoat, N. S., & Herridge, D. F. (2002). Fababean (Vicia faba) in Australia’s northern grains belt: Canopy development, biomass, and nitrogen accumulation and partitioning. Australian Journal of Agricultural Research, 53, 227–237.

    Article  Google Scholar 

  • Ucak, A. B., Ayasan, T., & Turan, T. (2016). Yield, quality and water use efficiencies of silage maize as effected by deficit irrigation treatments. Turkish Journal of Agriculture Food Science and Technology, 4, 1228–1239.

    Article  Google Scholar 

  • USDA, 1975. Agriculture Handbook 436, Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Conservation Service U.S. Department of Agriculture.

  • Van der Stelt, B., Temminghoff, E. J. M., & Riemsdijk, W. H. (2005). Measurement on ion speciation in animal slurries using the Donnan membrane technique. Analytica Chimica Acta, 552, 135–140.

    Article  CAS  Google Scholar 

  • Veljković, V. B., Biberdžić, M. O., Banković-Ilić, I. B., Djalović, I. G., Tasić, M. B., Nježić, Z. B., & Stamenković, O. S. (2018). Biodiesel production from corn oil: A review. Renewable and Sustainable Energy Reviews, 91, 531–548.

    Article  CAS  Google Scholar 

  • Wang, J., & Sainju, U. M. (2014). Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types. PLoS One 9.

  • Weldeslassie, T., Tripathi, R. P., & Ogbazghi, W. (2016). Optimizing tillage and irrigation requirements of sorghum in sorghum-pigeon-pea intercrop in Hamelmaalo Region of Eritrea. Journal of Geoscience and Environment Protection, 4, 63–73.

    Article  Google Scholar 

  • Young, I. M., Crawford, J. W., Nunan, N., Otten, W., & Spiers, A. (2008). Microbial Distribution in Soils: Physics and Scaling. In D. L. Sparks (Ed.), Advances in Agronomy (pp. 81–121). Burlington.

    Google Scholar 

  • Young, K. J., & Long, S. P. (2000). Crop ecosystem response to climatic change: Maize and sorghum. In K. R. Reddy & H. F. Hodges (Eds.), Climate Change and Global Crop Productivity (pp. 107–131). CABI.

    Chapter  Google Scholar 

Download references

Acknowledgements

The raw data are part of a PhD Thesis (Karyoti Aik., 2020) supported by the Laboratory of Agronomy and Applied Plant Physiology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos D. Giannoulis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karyoti, A., Giannoulis, K.D., Bartzialis, D. et al. Green Manuring for Low-input Irrigated Maize Cultivation as an Energy Crop in Mediterranean Climates. Int. J. Plant Prod. 15, 563–575 (2021). https://doi.org/10.1007/s42106-021-00165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-021-00165-1

Keywords

Navigation