Skip to main content

Advertisement

Log in

Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The coexistence of cardiovascular disease and erectile dysfunction is widespread, possibly owing to underlying endothelial dysfunction in both diseases. Millions of patients with cardiovascular disease are prescribed phosphodiesterase-5 (PDE5) inhibitors for the management of erectile dysfunction. Although the role of PDE5 inhibitors in erectile dysfunction therapy is well established, their effects on the cardiovascular system are unclear. Preclinical studies investigating the effect of PDE5 inhibitors on ischemia–reperfusion injury, pressure overload-induced hypertrophy, and chemotoxicity suggested a possible clinical role for each of these medications; however, attempts to translate these findings to the bedside have resulted in mixed outcomes. In this review, we explore the biologic preclinical effects of PDE5 inhibitors in mediating cardioprotection. We then examine clinical trials investigating PDE5 inhibition in patients with heart failure, coronary artery disease, and ventricular arrhythmias and discuss why the studies likely have yet to show positive results and efficacy with PDE5 inhibition despite no safety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

N/A [review article].

Code Availability

N/A.

References

  1. Garcia R, Burkle J. New and future parenteral therapies for the management of lipid disorders. Arch Med Res. 2018;49(8):538–47.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Cardiovascular diseases. 2021 May 17, 2017 [accessed 2021 May 31, 2021]; Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

  3. Writing Group M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38-360.

    Google Scholar 

  4. Fryar CD, Chen TC, Li X. Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999–2010. NCHS Data Brief. 2012;103:1–8.

    Google Scholar 

  5. Foster SA, et al. Erectile dysfunction with or without coexisting benign prostatic hyperplasia in the general US population: analysis of US National Health and Wellness Survey. Curr Med Res Opin. 2013;29(12):1709–17.

    Article  PubMed  Google Scholar 

  6. Shaeer O, Shaeer K. The Global Online Sexuality Survey (GOSS): the United States of America in 2011. Chapter I: erectile dysfunction among English-speakers. J Sex Med. 2012;9(12):3018–27.

    Article  PubMed  Google Scholar 

  7. Goldstein I, et al. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev. 2019;7(1):115–28.

    Article  PubMed  Google Scholar 

  8. Tzoumas, N., et al., Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. Br J Pharmacol, 2019.

  9. Wallis RM, et al. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol. 1999;83(5A):3C-12C.

    Article  CAS  PubMed  Google Scholar 

  10. Corbin J, et al. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin. 2003;19(8):747–52.

    Article  CAS  PubMed  Google Scholar 

  11. Reffelmann T, Kloner RA. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation. 2003;108(2):239–44.

    Article  PubMed  Google Scholar 

  12. Salloum FN, et al. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol. 2007;42(2):453–8.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue T, et al. cGMP upregulates nitric oxide synthase expression in vascular smooth muscle cells. Hypertension. 1995;25(4 Pt 2):711–4.

    Article  CAS  PubMed  Google Scholar 

  14. Cai Z, Zhang J, Li H. Two birds with one stone: regular use of PDE5 inhibitors for treating male patients with erectile dysfunction and cardiovascular diseases. Cardiovasc Drugs Ther. 2019;33(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  15. Loughney K, et al. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3’,5’-cyclic nucleotide phosphodiesterase. Gene. 1998;216(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  16. Lu Z, et al. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation. 2010;121(13):1474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagendran J, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Kass DA. Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci. 2011;32(6):360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gupta M, Kovar A, Meibohm B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J Clin Pharmacol. 2005;45(9):987–1003.

    Article  CAS  PubMed  Google Scholar 

  20. Kukreja RC, Salloum FN, Das A. Cyclic guanosine monophosphate signaling and phosphodiesterase-5 inhibitors in cardioprotection. J Am Coll Cardiol. 2012;59(22):1921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagayama T, et al. Pressure-overload magnitude-dependence of the anti-hypertrophic efficacy of PDE5A inhibition. J Mol Cell Cardiol. 2009;46(4):560–7.

    Article  CAS  PubMed  Google Scholar 

  22. Blanton RM, et al. Protein kinase g ialpha inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J Am Heart Assoc. 2012;1(5):e003731.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem. 2005;280(13):12944–55.

    Article  CAS  PubMed  Google Scholar 

  24. Fisher PW, et al. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation. 2005;111(13):1601–10.

    Article  CAS  PubMed  Google Scholar 

  25. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  26. Das A, et al. Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. Am J Physiol Heart Circ Physiol. 2004;286(4):H1455–60.

    Article  CAS  PubMed  Google Scholar 

  27. Salloum F, et al. Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res. 2003;92(6):595–7.

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Shi D, Guo M. The roles of PKC-delta and PKC-epsilon in myocardial ischemia/reperfusion injury. Pharmacol Res. 2021;170:105716.

    Article  CAS  PubMed  Google Scholar 

  29. Ockaili R, et al. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol. 2002;283(3):H1263–9.

    Article  CAS  PubMed  Google Scholar 

  30. Das S, et al. Cardioprotection with sildenafil, a selective inhibitor of cyclic 3’,5’-monophosphate-specific phosphodiesterase 5. Drugs Exp Clin Res. 2002;28(6):213–9.

    CAS  PubMed  Google Scholar 

  31. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83(4):1113–51.

    Article  CAS  PubMed  Google Scholar 

  32. Kukreja RC, et al. Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol. 2005;42(5–6):219–32.

    Article  CAS  PubMed  Google Scholar 

  33. Oldenburg O, et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol. 2004;286(1):H468–76.

    Article  CAS  PubMed  Google Scholar 

  34. Jankowski M, Broderick TL, Gutkowska J. The role of oxytocin in cardiovascular protection. Front Psychol. 2020;11:2139.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Paggio A, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019;572(7771):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lukowski, R., et al., cGMP and mitochondrial K(+) channels-compartmentalized but closely connected in cardioprotection. Br J Pharmacol, 2021.

  37. Elrod JW, Greer JJ, Lefer DJ. Sildenafil-mediated acute cardioprotection is independent of the NO/cGMP pathway. Am J Physiol Heart Circ Physiol. 2007;292(1):H342–7.

    Article  CAS  PubMed  Google Scholar 

  38. Reffelmann T, Kloner RA. Effects of sildenafil on myocardial infarct size, microvascular function, and acute ischemic left ventricular dilation. Cardiovasc Res. 2003;59(2):441–9.

    Article  CAS  PubMed  Google Scholar 

  39. Jones SP, et al. The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res. 2015;116(4):572–86.

    Article  CAS  PubMed  Google Scholar 

  40. Kukreja RC, et al. Administration of sildenafil at reperfusion fails to reduce infarct size: results from the CAESAR cardioprotection consortium (LB650). FASEB J. 2014;28:LB650.

    Article  Google Scholar 

  41. Takimoto E, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  42. Salloum FN, et al. Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation. 2009;120(11 Suppl):S31–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gong W, et al. Chronic inhibition of cGMP-specific phosphodiesterase 5 suppresses endoplasmic reticulum stress in heart failure. Br J Pharmacol. 2013;170(7):1396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lipskaia L, et al. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010;10(1):29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frank K, Kranias EG. Phospholamban and cardiac contractility. Ann Med. 2000;32(8):572–8.

    Article  CAS  PubMed  Google Scholar 

  46. Nagayama T, et al. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol. 2009;53(2):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. El-Armouche A, et al. Role of calcineurin and protein phosphatase-2A in the regulation of phosphatase inhibitor-1 in cardiac myocytes. Biochem Biophys Res Commun. 2006;346(3):700–6.

    Article  CAS  PubMed  Google Scholar 

  48. MacDonnell SM, et al. Calcineurin inhibition normalizes beta-adrenergic responsiveness in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2007;293(5):H3122–9.

    Article  CAS  PubMed  Google Scholar 

  49. Pokreisz P, et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation. 2009;119(3):408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salloum FN, et al. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol. 2008;294(3):H1398–406.

    Article  CAS  PubMed  Google Scholar 

  51. Hutchings DC, et al. Phosphodiesterase-5 inhibitors and the heart: compound cardioprotection? Heart. 2018;104(15):1244–50.

    Article  CAS  PubMed  Google Scholar 

  52. Hutchings, D.C., et al., PDE5 inhibition suppresses ventricular arrhythmias by reducing SR Ca(2+) content. Circ Res, 2021.

  53. Cao JM, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101(16):1960–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res. 2013;113(6):739–53.

    Article  CAS  PubMed  Google Scholar 

  55. Lee DI, et al. PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol. 2010;105(3):337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao JM, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86(7):816–21.

    Article  CAS  PubMed  Google Scholar 

  57. Kreusser MM, et al. Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol. 2008;44(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  58. Shelton DL, Reichardt LF. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci U S A. 1984;81(24):7951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kang CS, et al. Effect of ATP-sensitive potassium channel agonists on sympathetic hyperinnervation in postinfarcted rat hearts. Am J Physiol Heart Circ Physiol. 2009;296(6):H1949–59.

    Article  CAS  PubMed  Google Scholar 

  60. Lee TM, et al. Effect of sildenafil on ventricular arrhythmias in post-infarcted rat hearts. Eur J Pharmacol. 2012;690(1–3):124–32.

    Article  CAS  PubMed  Google Scholar 

  61. Borlaug BA, et al. Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation. 2005;112(17):2642–9.

    Article  CAS  PubMed  Google Scholar 

  62. Senzaki H, et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J. 2001;15(10):1718–26.

    Article  CAS  PubMed  Google Scholar 

  63. Nagy O, et al. Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br J Pharmacol. 2004;141(4):549–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feenstra J, et al. Acute myocardial infarction associated with sildenafil. Lancet. 1998;352(9132):957–8.

    Article  CAS  PubMed  Google Scholar 

  65. Herrmann HC, et al. Hemodynamic effects of sildenafil in men with severe coronary artery disease. N Engl J Med. 2000;342(22):1622–6.

    Article  CAS  PubMed  Google Scholar 

  66. Andersson DP, et al. Association between treatment for erectile dysfunction and death or cardiovascular outcomes after myocardial infarction. Heart. 2017;103(16):1264–70.

    Article  PubMed  Google Scholar 

  67. Andersson DP, et al. Association of phosphodiesterase-5 inhibitors versus alprostadil with survival in men with coronary artery disease. J Am Coll Cardiol. 2021;77(12):1535–50.

    Article  CAS  PubMed  Google Scholar 

  68. Thadani U, et al. The effect of vardenafil, a potent and highly selective phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction, on the cardiovascular response to exercise in patients with coronary artery disease. J Am Coll Cardiol. 2002;40(11):2006–12.

    Article  CAS  PubMed  Google Scholar 

  69. Patterson D, et al. The effect of tadalafil on the time to exercise-induced myocardial ischaemia in subjects with coronary artery disease. Br J Clin Pharmacol. 2005;60(5):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vestergaard N, et al. Relationship between treatment of erectile dysfunction and future risk of cardiovascular disease: a nationwide cohort study. Eur J Prev Cardiol. 2017;24(14):1498–505.

    Article  PubMed  Google Scholar 

  71. Ali A, et al. The safety of preoperative vardenafil in patients undergoing coronary artery bypass graft surgery. J Cardiovasc Pharmacol. 2013;62(1):106–9.

    Article  CAS  PubMed  Google Scholar 

  72. Fung E, et al. The potential use of type-5 phosphodiesterase inhibitors in coronary artery bypass graft surgery. Chest. 2005;128(4):3065–73.

    Article  CAS  PubMed  Google Scholar 

  73. Giannetta E, et al. Is chronic inhibition of phosphodiesterase type 5 cardioprotective and safe? A meta-analysis of randomized controlled trials. BMC Med. 2014;12:185.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rosano GM, et al. Chronic treatment with tadalafil improves endothelial function in men with increased cardiovascular risk. Eur Urol. 2005;47(2):214–20 (discussion 220-2).

    Article  CAS  PubMed  Google Scholar 

  75. Hackett G, et al. Statin, testosterone and phosphodiesterase 5-inhibitor treatments and age related mortality in diabetes. World J Diabetes. 2017;8(3):104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Anderson SG, et al. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. Heart. 2016;102(21):1750–6.

    Article  CAS  PubMed  Google Scholar 

  77. Gazzaruso C, et al. Erectile dysfunction as a predictor of cardiovascular events and death in diabetic patients with angiographically proven asymptomatic coronary artery disease: a potential protective role for statins and 5-phosphodiesterase inhibitors. J Am Coll Cardiol. 2008;51(21):2040–4.

    Article  PubMed  Google Scholar 

  78. Guazzi M, et al. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50(22):2136–44.

    Article  CAS  PubMed  Google Scholar 

  79. Guazzi M, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  80. Lewis GD, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.

    Article  CAS  PubMed  Google Scholar 

  81. Amin A, et al. Is chronic sildenafil therapy safe and clinically beneficial in patients with systolic heart failure? Congest Heart Fail. 2013;19(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  82. Guazzi M, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124(2):164–74.

    Article  CAS  PubMed  Google Scholar 

  83. Redfield MM, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309(12):1268–77.

    Article  CAS  PubMed  Google Scholar 

  84. Guay CA, et al. Pulmonary hypertension-targeted therapies in heart failure: a systematic review and meta-analysis. PLoS One. 2018;13(10):e0204610.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhuang XD, et al. PDE5 inhibitor sildenafil in the treatment of heart failure: a meta-analysis of randomized controlled trials. Int J Cardiol. 2014;172(3):581–7.

    Article  PubMed  Google Scholar 

  86. Shah PK. Sildenafil in the treatment of erectile dysfunction. N Engl J Med. 1998;339(10):699 (author reply 701-2).

    Article  CAS  PubMed  Google Scholar 

  87. Rasmussen JG, Toft E, Frobert O. Ventricular tachycardia after administration of sildenafil citrate: a case report. J Med Case Rep. 2007;1:65.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alpaslan M, et al. Sildenafil citrate does not affect QT intervals and QT dispersion: an important observation for drug safety. Ann Noninvasive Electrocardiol. 2003;8(1):14–7.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Beasley CM Jr, et al. The combined use of ibutilide as an active control with intensive electrocardiographic sampling and signal averaging as a sensitive method to assess the effects of tadalafil on the human QT interval. J Am Coll Cardiol. 2005;46(4):678–87.

    Article  CAS  PubMed  Google Scholar 

  90. Morganroth, J., et al., Evaluation of vardenafil and sildenafil on cardiac repolarization. Am J Cardiol, 2004. 93(11): p. 1378–83, A6.

  91. Varma A, Shah KB, Hess ML. Phosphodiesterase inhibitors, congestive heart failure, and sudden death: time for re-evaluation. Congest Heart Fail. 2012;18(4):229–33.

    Article  PubMed  Google Scholar 

  92. Ravichandran AK, et al. Sildenafil in left ventricular assist device is safe and well-tolerated. ASAIO J. 2018;64(2):280–1.

    Article  CAS  PubMed  Google Scholar 

  93. Gulati G, et al. Preimplant phosphodiesterase-5 inhibitor use is asssociated with higher rates of severe early right heart failure after left ventricular assist device implantation. Circ Heart Fail. 2019;12(6):e005537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Roberts KL, et al. Evaluation of clinical outcomes with phosphodiesterase-5 inhibitor therapy for right ventricular dysfunction after left ventricular assist device implantation. ASAIO J. 2019;65(3):264–9.

    Article  CAS  PubMed  Google Scholar 

  95. Hamdan R, et al. Prevention of right heart failure after left ventricular assist device implantation by phosphodiesterase 5 inhibitor. Artif Organs. 2014;38(11):963–7.

    Article  CAS  PubMed  Google Scholar 

  96. Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  97. Corbin JD, et al. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun. 2005;334(3):930–8.

    Article  CAS  PubMed  Google Scholar 

  98. Montani D, et al. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Adv Ther. 2009;26(9):813–25.

    Article  CAS  PubMed  Google Scholar 

  99. Rubin LJ, et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest. 2011;140(5):1274–83.

    Article  CAS  PubMed  Google Scholar 

  100. Pepke-Zaba J, et al. Sildenafil improves health-related quality of life in patients with pulmonary arterial hypertension. Chest. 2008;133(1):183–9.

    Article  CAS  PubMed  Google Scholar 

  101. Oudiz RJ, et al. Tadalafil for the treatment of pulmonary arterial hypertension: a double-blind 52-week uncontrolled extension study. J Am Coll Cardiol. 2012;60(8):768–74.

    Article  CAS  PubMed  Google Scholar 

  102. Pepke-Zaba J, et al. Tadalafil therapy and health-related quality of life in pulmonary arterial hypertension. Curr Med Res Opin. 2009;25(10):2479–85.

    Article  CAS  PubMed  Google Scholar 

  103. Galie N, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119(22):2894–903.

    Article  CAS  PubMed  Google Scholar 

  104. Kloner RA, et al. Cardiovascular safety of phosphodiesterase type 5 inhibitors after nearly 2 decades on the market. Sex Med Rev. 2018;6(4):583–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Jason Miller for his assistance with the figure.

Author information

Authors and Affiliations

Authors

Contributions

ISJ and SR had the idea for the article. SR wrote the first draft. All authors contributed to literature search, drafting, and critically revising the work. All authors approved the final version.

Corresponding author

Correspondence to Ion S. Jovin.

Ethics declarations

Ethics approval and consent to participate

N/A.

Consent for Publication

N/A.

Competing Interests

Dr. Robert Kloner is a paid consultant for Sanofi. Dr. Fadi Salloum is funded by the National Institutes of Health (R35 HL155651).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Kloner, R.A., Salloum, F.N. et al. Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovasc Drugs Ther 37, 793–806 (2023). https://doi.org/10.1007/s10557-021-07275-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07275-y

Keywords

Navigation