Skip to main content

Advertisement

Log in

Genetic analysis of the pX region of bovine leukemia virus genotype 1 in Holstein Friesian cattle with different stages of infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The pX genetic region of bovine leukemia virus (BLV) includes four genes with overlapping reading frames that code for the Tax, Rex, R3, and G4 proteins. These proteins are involved in the regulation of transcriptional and post-transcriptional viral expression, as well as having oncogenic potential. Our goal was to investigate the pathogenicity of the pX region of BLV genotype 1 in terms of lymphocytosis, lymphomas, and proviral DNA load. We screened 724 serological samples from mixed-age Holstein Friesian cattle from six states in Mexico. Peripheral blood leukocytes (PBLs) were isolated from whole blood with anticoagulant, and genomic DNA was extracted from the PBLs using a commercial kit. Then, a set of primers that hybridize in conserved regions of the BLV pX region were used, which allowed for PCR standardization to detect proviral DNA in infected cells. Positive amplicons were sequenced using the Sanger method, resulting in 1156-nucleotide-long final sequences that included the four pX region genes. The experimental group consisted of 30 animals. Twelve of these had lymphocytosis, six had lymphoma, and 12 were apparently healthy cattle without any signs of lymphocytosis or lymphoma. The presence of lymphoma was detected in six bovine tumor tissues using histopathology, and the presence of BLV was detected by in situ hybridization. Phylogenetic analysis demonstrated that the 30 sequences were associated with genotype 1, and the genetic distance between the sequences ranged from 0.2% to 2.09%. We identified two sequences in the G4 gene: one with a three-nucleotide deletion resulting in the loss of a leucine (AGU_7488L, in a cow with lymphocytosis), and one with a nine-nucleotide deletion resulting in the loss of leucine, proline, and leucine (AGU_18A, in a cow without lymphocytosis). Analysis of the PX region indicated that positive selection had occurred in the G4, rex, and R3 genes, and we found no difference in proviral DNA load between the studied groups. We were unable to establish an association between variations in the pX region and the development of lymphocytosis, lymphoma, asymptomatic status, or proviral DNA load in BLV-infected cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bai L, Takeshima S, Isogai E et al (2015) Novel CD8+ cytotoxic T cell epitopes in bovine leukemia virus with cattle. Vaccine 33:7194–7202. https://doi.org/10.1016/j.vaccine.2015.10.128

    Article  CAS  PubMed  Google Scholar 

  2. Felmer R, Zúñiga J, Recabal M, Chávez R (2006) Diagnóstico y tipificación del virus de la leucosis bovina mediante una prueba de PCR-RFLP a partir de ADN extraído desde células somáticas de la leche. Archivos de medicina veterinaria. https://doi.org/10.4067/S0301-732X2006000300009

    Article  Google Scholar 

  3. Wu MC, Shanks RD, Lewin HA (1989) Milk and fat production in dairy cattle influenced by advanced subclinical bovine leukemia virus infection. Proc Natl Acad Sci 86:993–996. https://doi.org/10.1073/pnas.86.3.993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller JM, Van der Maaten MJ (1982) Bovine leukosis—its importance to the dairy industry in the United States. J Dairy Sci 65:2194–2203. https://doi.org/10.3168/jds.S0022-0302(82)82482-X

    Article  CAS  PubMed  Google Scholar 

  5. Selim A, Marawan MA, Ali A-F et al (2020) Seroprevalence of bovine leukemia virus in cattle, buffalo, and camel in Egypt. Trop Anim Health Prod 52:1207–1210. https://doi.org/10.1007/s11250-019-02105-8

    Article  PubMed  Google Scholar 

  6. Gillet N, Florins A, Boxus M et al (2007) Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 4:18. https://doi.org/10.1186/1742-4690-4-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. El HH, Nasr R, Kfoury Y et al (2012) Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol. https://doi.org/10.3389/fmicb.2012.00333

    Article  Google Scholar 

  8. Maezawa M, Inokuma H (2020) Analysis of bovine leukemia virus integration sites in cattle under 3 years old with enzootic bovine leukosis. Arch Virol 165:179–183. https://doi.org/10.1007/s00705-019-04431-6

    Article  CAS  PubMed  Google Scholar 

  9. Aida Y, Murakami H, Takahashi M, Takeshima S-N (2013) Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 4:328. https://doi.org/10.3389/fmicb.2013.00328

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krupovic M, Blomberg J, Coffin JM et al (2018) Ortervirales: new virus order unifying five families of reverse-transcribing viruses. J Virol. https://doi.org/10.1128/JVI.00515-18

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pierard V, Guiguen A, Colin L et al (2010) DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of camp-responsive element (CRE)-binding protein/cre modulator/activation transcription. J Biol Chem 285:19434–19449. https://doi.org/10.1074/jbc.M110.107607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Polat M, Takeshima S, Aida Y (2017) Epidemiology and genetic diversity of bovine leukemia virus. Virol J 14:209. https://doi.org/10.1186/s12985-017-0876-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sagata N, Yasunaga T, Ohishi K et al (1984) Comparison of the entire genomes of bovine leukemia virus and human T-cell leukemia virus and characterization of their unidentified open reading frames. EMBO J 3:3231–3237. https://doi.org/10.1126/science.557842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felber BK, Derse D, Athanassopoulos A, Campbell MPG (1989) Cross-activation of the Rex proteins of HTLV-I and BLV and of the Rev protein of HIV-1 and nonreciprocal interactions with their RNA responsive elements. New Biol 1:318–328

    CAS  PubMed  Google Scholar 

  15. Pozzatti R, Vogel J, Jay G (1990) The human T-lymphotropic virus type I tax gene can cooperate with the ras oncogene to induce neoplastic transformation of cells. Mol Cell Biol 10:413–417. https://doi.org/10.1128/MCB.10.1.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willems L, Heremans H, Chen G et al (1990) Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation. EMBO J 9:1577–1581

    Article  CAS  Google Scholar 

  17. Florins A, Gillet N, Boxus M et al (2007) Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J Virol 81:10195–10200. https://doi.org/10.1128/JVI.01058-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pluta A, Willems L, Douville RN, Kuźmak J (2020) Effects of naturally occurring mutations in bovine leukemia virus 5′-LTR and tax gene on viral transcriptional activity. Pathogens 9:836. https://doi.org/10.3390/pathogens9100836

    Article  CAS  PubMed Central  Google Scholar 

  19. Cerón Téllez F, González Méndez AS, Tórtora Pérez JL et al (2020) Lack of association between amino acid sequences of the bovine leukemia virus envelope and varying stages of infection in dairy cattle. Virus Res. https://doi.org/10.1016/j.virusres.2020.197866

    Article  PubMed  Google Scholar 

  20. Heinecke N, Tórtora J, Martínez HA et al (2017) Detection and genotyping of bovine leukemia virus in Mexican cattle. Arch Virol. https://doi.org/10.1007/s00705-017-3477-z

    Article  PubMed  Google Scholar 

  21. Mendiola WPS, Tórtora JL, Martínez HA et al (2019) Genotyping based on the LTR region of small ruminant lentiviruses from naturally infected sheep and goats from Mexico. Biomed Res Int. https://doi.org/10.1155/2019/4279573

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  23. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304

    Article  PubMed  PubMed Central  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  25. Tolle A, Jahnke H-D, Hasse G (2010) Zur Diagnostik der Rinderleukose und ihrer Bekämpfung in Südniedersachsen. Zentralbl Veterinarmed B 12:435–443. https://doi.org/10.1111/j.1439-0450.1965.tb01408.x

    Article  Google Scholar 

  26. Moratorio G, Fischer S, Bianchi S et al (2013) A detailed molecular analysis of complete Bovine Leukemia Virus genomes isolated from B-cell lymphosarcomas. Vet Res 44:19. https://doi.org/10.1186/1297-9716-44-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lefèbvre L, Ciminale V, Vanderplasschen A et al (2002) Subcellular localization of the bovine proteins subcellular localization of the bovine leukemia virus R3 and G4 accessory proteins. J Virol 76:7843–7854. https://doi.org/10.1128/JVI.76.15.7843

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alexandersen S, Carpenter S, Christensen J et al (1993) Identification of alternatively spliced mRNAs encoding potential new regulatory proteins in cattle infected with bovine leukemia virus. J Virol 67:39–52. https://doi.org/10.1128/JVI.67.1.39-52.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lefèbvre L, Vanderplasschen A, Ciminale V et al (2002) Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13II accessory proteins interact with farnesyl pyrophosphate synthetase. J Virol 76:1400–1414. https://doi.org/10.1128/JVI.76.3.1400-1414.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murakami H, Uchiyama J, Nikaido S et al (2016) Inefficient viral replication of bovine leukemia virus induced by spontaneous deletion mutation in the G4 gene. J Gen Virol 97:2753–2762. https://doi.org/10.1099/jgv.0.000583

    Article  CAS  PubMed  Google Scholar 

  31. Choi E-A, Hope TJ (2005) Mutational analysis of bovine leukemia virus rex: identification of a dominant-negative inhibitor. J Virol 79:7172–7181. https://doi.org/10.1128/JVI.79.11.7172-7181.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim FJ, Beeche AA, Hunter JJ et al (1996) Characterization of the nuclear export signal of human T-cell lymphotropic virus type 1 Rex reveals that nuclear export is mediated by position-variable hydrophobic interactions. Mol Cell Biol 16:5147–5155. https://doi.org/10.1128/MCB.16.9.5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zapp ML, Hope TJ, Parslow TG, Green MR (1991) Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci 88:7734–7738. https://doi.org/10.1073/pnas.88.17.7734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao X, McGirr KM, Buehring GC (2007) Potential evolutionary influences on overlapping reading frames in the bovine leukemia virus pXBL region. Genomics 89:502–511. https://doi.org/10.1016/j.ygeno.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Tajima S, Aida Y (2000) The Region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. J Virol 74:10939–10949. https://doi.org/10.1128/JVI.74.23.10939-10949.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Den Broeke A, Bagnis C, Ciesiolka M et al (1999) In vivo rescue of a silent tax-deficient bovine leukemia virus from a tumor-derived ovine B-cell line by recombination with a retrovirally transduced wild-type taxgene. J Virol 73:1054–1065. https://doi.org/10.1128/JVI.73.2.1054-1065.1999

    Article  Google Scholar 

  37. Merimi M, Klener P, Szynal M et al (2007) Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep. Retrovirology 4:51. https://doi.org/10.1186/1742-4690-4-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Panei CJ, Serena MS, Metz GE et al (2013) Analysis of the pX region of bovine leukemia virus in different clinical stages of Enzootic Bovine Leukemia in Argentine Holstein cattle. Virus Res 171:97–102. https://doi.org/10.1016/j.virusres.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  39. Kazemimanesh M, Madadgar O, Steinbach F et al (2019) Detection and molecular characterization of bovine leukemia virus in various regions of Iran. J Gen Virol 100:1315–1327. https://doi.org/10.1099/jgv.0.001303

    Article  CAS  PubMed  Google Scholar 

  40. McGirr KM, Buehuring GC (2006) Tax & rex: overlapping genes of the deltaretrovirus group. Virus Genes 32:229–239. https://doi.org/10.1007/s11262-005-6907-z

    Article  CAS  PubMed  Google Scholar 

  41. Nakano Y, Aso H, Soper A et al (2017) A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif. Retrovirology 14:31. https://doi.org/10.1186/s12977-017-0355-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andoh K, Kimura K, Nishimori A, Hatama S (2020) Development of an in situ hybridization assay using an AS1 probe for detection of bovine leukemia virus in BLV-induced lymphoma tissues. Arch Virol 165:2869–2876. https://doi.org/10.1007/s00705-020-04837-7

    Article  CAS  PubMed  Google Scholar 

  43. Khudhair YI, Hasso SA, Yaseen NY, Al-Shammari AM (2016) Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg Microb Infect 5:e56. https://doi.org/10.1038/emi.2016.60

    Article  CAS  Google Scholar 

  44. Rajão DS, Heinemann MB, Reis JKP et al (2014) Effects of bovine leukemia virus infection on crossbred and purebred dairy cattle productive performance in Brazil. Semina Ciências Agrárias 35:891. https://doi.org/10.5433/1679-0359.2014v35n2p891

    Article  Google Scholar 

  45. Bartlett PC, Sordillo LM, Byrem TM et al (2014) Options for the control of bovine leukemia virus in dairy cattle. J Am Vet Med Assoc 244:914–922. https://doi.org/10.2460/javma.244.8.914

    Article  PubMed  Google Scholar 

  46. Juliarena MA, Gutierrez SE, Ceriani C (2007) Determination of provirus load in bovine leukemia virus-infected cattle with and without lymphocytosis. Am J Vet Res 68:1220–1225. https://doi.org/10.2460/ajvr.68.11.1220

    Article  CAS  PubMed  Google Scholar 

  47. Lo C-W, Borjigin L, Saito S et al (2020) BoLA-DRB3 Polymorphism is associated with differential susceptibility to bovine leukemia virus-induced lymphoma and provirus load. Viruses 12:352. https://doi.org/10.3390/v12030352

    Article  CAS  PubMed Central  Google Scholar 

  48. Kobayashi T, Inagaki Y, Ohnuki N et al (2020) Increasing Bovine leukemia virus (BLV) provirus load is a risk factor for progression of Enzootic bovine leucosis: a prospective study in Japan. Prev Vet Med 178:104680. https://doi.org/10.1016/j.prevetmed.2019.04.009

    Article  Google Scholar 

  49. Martin D, Arjona A, Soto I et al (2001) Comparative study of PCR as a direct assay and ELISA and AGID as indirect assays for the detection of bovine leukaemia virus. J Vet Med Ser B 48:97–106. https://doi.org/10.1046/j.1439-0450.2001.00424.x

    Article  CAS  Google Scholar 

  50. Kalvatchev Z, Walder R, Garzaro D, Barrios M (2000) Detection of genetic diversity among bovine immunodeficiency virus population by single-strand conformation polymorphism analysis. Viral Immunol 13:373–381. https://doi.org/10.1089/08828240050144680

    Article  CAS  PubMed  Google Scholar 

  51. Monroy Basilio JL, Tavera FJT, De Aluja AS et al (1992) Estudio comparativo entre las pruebas de ELISA e inmunodifusión en el diagnóstico de la Leucosis Enzoótica Bovina. Vet Mexico 1993:21–25

    Google Scholar 

  52. USDA (2008) Bovine Leukosis Virus (BLV) on U.S. Dairy Operations. USDA, New York, pp 1–2

    Google Scholar 

  53. Hsieh J-C, Li C-Y, Hsu W-L, Chuang S-T (2019) Molecular epidemiological and serological studies of bovine leukemia virus in Taiwan dairy cattle. Front Vet Sci. https://doi.org/10.3389/fvets.2019.00427

    Article  PubMed  PubMed Central  Google Scholar 

  54. Callebaut I, Vonèche V, Mager A et al (1993) Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51. J Virol 67:5321–5327. https://doi.org/10.1128/JVI.67.9.5321-5327.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mamoun RZ, Morisson M, Rebeyrotte N et al (1990) Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol 64:4180–4188

    Article  CAS  Google Scholar 

  56. Rodriguez SM, Golemba MD, Campos RH et al (2009) Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades. J Gen Virol 90:2788–2797. https://doi.org/10.1099/vir.0.011791-0

    Article  CAS  PubMed  Google Scholar 

  57. Balić D, Lojkić I, Periškić M et al (2012) Identification of a new genotype of bovine leukemia virus. Arch Virol 157:1281–1290. https://doi.org/10.1007/s00705-012-1300-4

    Article  CAS  PubMed  Google Scholar 

  58. Polat M, Takeshima S, Hosomichi K et al (2016) A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 13:4. https://doi.org/10.1186/s12977-016-0239-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee EJ, Kim EJ, Ratthanophart J et al (2016) Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect Genet Evol 41:245–254. https://doi.org/10.1016/j.meegid.2016.04.010

    Article  PubMed  Google Scholar 

  60. OIE (2012) Enzootic bovine leukosis. OIE terrestrial manual. OIE, Paris, pp 721–732

    Google Scholar 

Download references

Acknowledgements

We thank the ranchers who kindly provided samples, as well as the staff of the virology, genetics, and molecular biology laboratory of FES Cuautitlan UNAM. Neli Montero was a student in the MSc program: Programa en Ciencias de la Producción y de la Salud Animal, UNAM, and supported by a CONACyT grant scholarship.

Funding

This study was funded by FONSEC SAGARPA-CONACyT project 2017-6-292826 and by PIAPI2041. FESC. UNAM “Estudio de la respuesta inmune y genética retroviral”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Ramírez Álvarez.

Ethics declarations

Conflict of interest

The authors have no financial or personal interests that could influence or bias the content of this article. The authors declare that they have no competing interests. All authors have seen and approved the manuscript.

Additional information

Handling Editor: William G Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero Machuca, N., Tórtora Pérez, J.L., González Méndez, A.S. et al. Genetic analysis of the pX region of bovine leukemia virus genotype 1 in Holstein Friesian cattle with different stages of infection. Arch Virol 167, 45–56 (2022). https://doi.org/10.1007/s00705-021-05252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05252-2

Navigation