Skip to main content
Log in

One-Dimensional Quaternionic Special Affine Fourier Transform

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We extend the special affine Fourier transform in the context of quaternion valued functions and study its properties including an uncertainty principle. The same transform is studied on a suitably constructed Boehmian space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, S., Sheridan, J.T.: Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach. J. Phys. 27, 4179–4187 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Abe, S., Sheridan, J.T.: Optical operations on wave functions as the abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19, 1801–1803 (1994)

    Article  ADS  Google Scholar 

  3. Abe, S., Sheridan, J.T.: Almost Fourier and almost Fresnel transformations. Opt. Commun. 113, 385–388 (1995)

    Article  ADS  Google Scholar 

  4. Akila, L., Roopkumar, R.: A natural convolution of quaternion valued functions and its applications. Appl. Math. Comput. 242, 633–642 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Akila, L., Roopkumar, R.: Multidimensional quaternionic Gabor transforms. Adv. Appl. Clifford Algebras 25, 771–1002 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Atanasiu, D., Mikusiński, P.: On the Fourier transform, Boehmians, and distributions. Colloq. Math. 108, 263–276 (2007)

    Article  MathSciNet  Google Scholar 

  7. Arteaga, C., Marrero, I.: The Hankel transform of tempered Boehmians via the exchange property. Appl. Math. Comput. 219, 810–818 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Bhandari, A., Zayed, A.I.: Convolution and product theorems for the special affine Fourier transform. In: Nashed, M.Z., Li, X. (eds.) Frontiers in Orthogonal Polynomials and q-Series, pp. 119–137. World Scientific, Singapore (2018)

    Chapter  Google Scholar 

  9. Bhandari, A., Zayed, A.I.: Shift-invariant and sampling spaces associated with the special affine Fourier transform. Appl. Comput. Harmon. Anal. 47, 30–52 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cai, L.Z.: Special affine fractional Fourier transformation in frequency domain. Opt. Commun. 185, 271–276 (2000)

    Article  ADS  Google Scholar 

  11. El Haoui, Y., Hitzer, E.: Generalized uncertainty principles associated with the quaternionic offset linear canonical transform. Complex Var. Elliptic Equ. (2021). https://doi.org/10.1080/17476933.2021.1916919

    Article  Google Scholar 

  12. Ell, T.A.: Quaternion Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceedings of the 32nd Conference on Decision Control, vol. 1, pp. 1830–1841 (1993)

  13. Ganesan, C., Roopkumar, R.: On generalizations of Boehmians and Hartley transform. Mat. Vesnik. 69, 133–143 (2017)

    MathSciNet  MATH  Google Scholar 

  14. He, J., Yu, B.: Continuous wavelet transforms on the space \(L^2(R, H, dx)\). Appl. Math. Lett. 17, 111–121 (2004)

    Article  MathSciNet  Google Scholar 

  15. Hitzer, E.M.S.: Directional uncertainty principle for quaternion Fourier transform. Adv. Appl. Clifford Algebras 20, 271–284 (2010)

    Article  MathSciNet  Google Scholar 

  16. James, D.F.V., Agarwal, G.S.: The generalized Fresnel transform and its applications to optics. Opt. Commun. 126, 207–212 (1996)

    Article  ADS  Google Scholar 

  17. Karunakaran, V., Kalpakam, N.V.: Hilbert transform for Boehmians. Integral Transforms Spec. Funct. 9, 19–36 (2000)

    Article  MathSciNet  Google Scholar 

  18. Mikusiński, P.: Convergence of Boehmians. Jpn. J. Math. 9, 159–179 (1983)

    Article  MathSciNet  Google Scholar 

  19. Mikusiński, P.: On harmonic Boehmians. Proc. Am. Math. Soc. 106, 447–449 (1989)

    Article  MathSciNet  Google Scholar 

  20. Mikusiński, P.: On flexibility of Boehmians. Integral Transforms Spec. Funct. 7, 299–312 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Nemzer, D.: Integrable Boehmians, Fourier transforms, and Poisson’s summation formula. Appl. Anal. Disc. Math. 1, 172–183 (2007)

    Article  MathSciNet  Google Scholar 

  22. Nemzer, D.: Quasi-asymptotic behavior of Boehmians. Novi Sad J. Math. 46, 87–102 (2016)

    Article  MathSciNet  Google Scholar 

  23. Nemzer, D.: Extending the Stieltjes transform. Sarajevo J. Math. 10, 197–208 (2014)

    Article  MathSciNet  Google Scholar 

  24. Moshinsky, M., Quesne, C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12, 1772–1780 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  25. Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25, 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  26. Pei, S.C., Ding, J.J.: Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. J. Opt. Soc. Am. A 20, 522–532 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Roopkumar, R.: Quaternionic one-dimensional fractional Fourier transform. Optik 127, 11657–11661 (2016)

    Article  ADS  Google Scholar 

  28. Roopkumar, R.: Ripplet transform and its extension to Boehmians. Georgian Math. J. 27, 149–156 (2017)

    Article  MathSciNet  Google Scholar 

  29. Roopkumar, R.: Quaternionic fractional Fourier transform for Boehmians. Ukr. J. Math. 72, 942–952 (2020)

    Article  MathSciNet  Google Scholar 

  30. Sangwine, S.J.: Fourier transforms of colour images using quaternion or hypercomplex numbers. Electron. Lett. 32, 1979–1980 (1996)

    Article  ADS  Google Scholar 

  31. Sangwine, S.J.: Colour image edge detector based on quaternion convolution. Electron. Lett. 34, 969–971 (1998)

    Article  ADS  Google Scholar 

  32. Shah, F.A., Tantary, A.Y.: Quaternionic shearlet transform. Optik 175, 115–125 (2018)

    Article  ADS  Google Scholar 

  33. Sharma, K.K., Joshi, S.D.: Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265, 454–460 (2006)

    Article  ADS  Google Scholar 

  34. Stern, A.: Sampling of compact signals in offset linear canonical transform domains. Signal Image Video Process. 1, 359–367 (2007)

    Article  Google Scholar 

  35. Xiang, Q., Qin, K.: Convolution, correlation, and sampling theorems for the offset linear canonical transform. Signal Image Video Process. 8, 2385–2406 (2013)

    Google Scholar 

  36. Zayed, A.I.: A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 5, 101–103 (1998)

    Article  ADS  Google Scholar 

  37. Zemanian, A.H.: Generalized Integral Transformations. Wiley Inc., New York (1968)

    MATH  Google Scholar 

  38. Zhi, X., Wei, D., Zhang, W.: A generalized convolution theorem for the special affine Fourier transform and its application to filtering. Optik 127, 2613–2616 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the reviewers for their insightful comments and suggestions towards the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajakumar Roopkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings ICCA 12, Hefei, 2020, edited by Guangbin Ren, Uwe K\(\ddot{a}\)hler, Rafal Ablamowicz, Fabrizio Colombo, Pierre Dechant, Jacques Helmstetter, G. Stacey Staples, Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roopkumar, R. One-Dimensional Quaternionic Special Affine Fourier Transform. Adv. Appl. Clifford Algebras 31, 73 (2021). https://doi.org/10.1007/s00006-021-01174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01174-z

Keywords

Mathematics Subject Classification

Navigation