Skip to main content
Log in

A Switching Image-Based Visual Servoing Method for Cooperative Continuum Robots

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a full-kinematic model and a visual-servo control system for recently introduced cooperative continuum robots (CCRs) are proposed. The focus will be on operative-supportive configuration which consists of two continuum robots (CRs), coupled to perform a positioning task. First, a hybrid kinematic modeling approach based on Denavit-Hartenberg method and Cosserat rod theory is developed. An efficient control system is also introduced within which the issues related to numerical Jacobian of Cosserat-based approach are addressed. A switching image-based visual servoing (IBVS) control strategy is proposed. The switching controller enables switching between the standard and proposed scaled-and non-dimensional (SND) IBVS sub-control systems. The stability of the proposed system in the sense of Lyapunov is also proved. Extensive simulations verified that SND IBVS is well capable of reducing large error signals at the beginning of the motion. In addition, the performance of the proposed switching approach, standard IBVS, and SND IBVS are compared to highlight the effectiveness of the proposed switching controller. Robustness analysis is also included here to show that even in the presence of imaging and actuation noise, the controlled system smoothly accomplishes the positioning task with an acceptable convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sadati, S.H., Naghibi, S.E., Shiva, A., Walker, I.D., Kaspar, A., Nanayakkara, T.: Mechanics of continuum manipulators, a comparative study of five methods with experiments, pp. 686–702. Proc. Annu. Conf. Towar. Auton. Robot. Syst, Guildford (2017)

    Google Scholar 

  2. Norouzi-Ghazbi, S., Janabi-Sharifi, F.: Dynamic modeling and system identification of internally actuated, small-sized continuum robots. Mech. Mach. Theory. 154, 104043 (2020)

    Article  Google Scholar 

  3. Goharimanesh, M., Mehrkish, A., Janabi-Sharifi, F.: A fuzzy reinforcement learning approach for continuum robot control. J. Intell. Robot. Sys. 100(3), 809–826 (2020)

    Article  Google Scholar 

  4. Lotfavar, A., Hasanzadeh, S., Janabi-Sharifi, F.: Cooperative continuum robots: concept, modeling, workspace analysis. IEEE Robot. Autom. Lett. 3(1), 426–433 (2017)

    Article  Google Scholar 

  5. Norouzi-Ghazbi, S., Mehrkish, A., Abdulhafiz, I., Abbasihashemi, T., Mahdi, A., Janabi-Sharifi, F.: Design and experimental evaluation of an automated catheter operating system. Artif. Organs (2020)

  6. Black, C. B.. Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery,” Ph.D Thesis, University of Tennessee, (2017)

  7. Renda, F., Giorelli, M., Calisti, M., Cianchetti, M., Laschi, C.: Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 30(5), 1109–1122 (2014)

    Article  Google Scholar 

  8. Hannan, M.W., Walker, I.D.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Robot. Syst. 20(2), 45–63 (2003)

    Article  Google Scholar 

  9. Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., Dario, P.: An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6(3), 36002–36012 (2011)

    Article  Google Scholar 

  10. Rone, W.S., Ben-Tzvi, P.: Continuum robot dynamics utilizing the principle of virtual power. IEEE Trans. Robot. 30(1), 275–287 (2014)

    Article  Google Scholar 

  11. Kang, R., Branson, D.T., Guglielmino, E., Caldwell, D.G.: Dynamic modeling and control of an octopus inspired multiple continuum arm robot. Comput. Math. with Appl. 64(5), 1004–1016 (2012)

    Article  Google Scholar 

  12. Della Santina, C., Katzschmann, R.K., Bicchi, A., Rus, D.: Dynamic control of soft robots interacting with the environment, pp. 46–53. Proc. IEEE Int. Conf. on Soft Robot., RoboSoft 2018, Livorno (2018)

    Google Scholar 

  13. Burgner, J., Rucker, D.C., Gilbert, H.B., Swaney, P.J., Russell, P.T., Weaver, K.D., Webster, R.J.: A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatronics. 19(3), 996–1006 (2014)

    Article  Google Scholar 

  14. Yu, H., Wu, L., Wu, K., Ren, H.: Development of a multi-channel concentric tube robotic system with active vision for transnasal nasopharyngeal carcinoma procedures. IEEE Robot. Autom. Lett. 1(2), 1172–1178 (2016)

    Article  Google Scholar 

  15. Conrad, B.L., Jung, J., Penning, R.S., Zinn, M.R.: Interleaved continuum-rigid manipulation: An augmented approach for robotic minimally-invasive flexible catheter-based procedures, pp. 718–724. Proc. IEEE Int. Conf. Robot. Autom., Karlsruhe (2013)

    Google Scholar 

  16. Chikhaoui, M.T., Granna, J., Starke, J., Burgner-Kahrs, J.: Toward motion coordination control and design optimization for dual-arm concentric tube continuum robots. IEEE Robot. Autom. Lett. 3(3), 1793–1800 (2018)

    Article  Google Scholar 

  17. Toibero, J.M., Soria, C.M., Roberti, F., Carelli, R., Fiorini, P.: Switching visual servoing approach for stable corridor navigation, pp. 1–6. Proc. Int. Conf. Adv. Robotics, Munich (2009)

    Google Scholar 

  18. Ghasemi, A., Li, P., Xie, W.F.: Adaptive switch image-based visual servoing for industrial robots. Int. J. Control. Autom. Syst. 18(5), 1324–1334 (2020)

    Article  Google Scholar 

  19. Fang, Y., Liu, X., Zhang, X.: Adaptive active visual servoing of nonholonomic mobile robots. IEEE Trans. Ind. Electron. 59(1), 486–497 (2012)

    Article  Google Scholar 

  20. Pasteau, F., Narayanan, V.K., Babel, M., Chaumette, F.: A visual servoing approach for autonomous corridor following and doorway passing in a wheelchair. Rob. Auton. Syst. 75, 28–40 (2014)

    Article  Google Scholar 

  21. Zhao, Y.M., Lin, Y., Xi, F., Guo, S., Ouyang, P.: Switch-based sliding mode control for position-based visual servoing of robotic riveting system. J. Manuf. Sci. Eng. Trans. ASME. 139(4), 1–11 (2017)

    Article  Google Scholar 

  22. Ghasemi, A., Li, P., Xie, W.F., Tian, W.: Enhanced switch image-based visual servoing dealing with featuresloss. Electronics. 8(8), 1–20 (2019)

    Article  Google Scholar 

  23. Kudryavtsev, A.V., Chikhaoui, M.T., Liadov, A., Rougeot, P., Spindler, F., Rabenorosoa, K., Burgner-Kahrs, J., Tamadazte, B., Andreff, N.: Eye-in-hand visual servoing of concentric tube robots. IEEE Robot. Autom. Lett. 3(3), 2315–2321 (2018)

    Article  Google Scholar 

  24. Wang, H., Yang, B., Liu, Y., Chen, W., Liang, X., Pfeifer, R.: Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatronics. 22(1), 41–50 (2017)

    Article  Google Scholar 

  25. Vrooijink, G.J., Denasi, A., Grandjean, J.G., Misra, S.: Model predictive control of a robotically actuated delivery sheath for beating heart compensation. Int. J. Robot. Res. 36(2), 193–209 (2017)

    Article  Google Scholar 

  26. Ouyang, B., Mo, H., Chen, H., Liu, Y., Sun, D.: Robust model-predictive deformation control of a soft object by using a flexible continuum robot, pp. 613–618. Proc. IEEE Int. Conf. Intell. Robots Syst., Madrid (2018)

    Google Scholar 

  27. Lai, J., Huang, K., Lu, B., Chu, H.K.: Toward vision-based adaptive configuring of a bidirectional two-segment soft continuum manipulator, pp. 934–939. Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, Boston (2020)

    Google Scholar 

  28. M. M. H. Fallah, S. Norouzi-Gh, A. Mehrkish, and F. Janabi-Sharifi, “Depth-based visual predictive control of tendon-driven continuum robots,” in Proc. IEEE/ASME Int.Conf. Advanced Intel. Mechatronics, AIM, vol. 2020-July, pp. 488–494, Boston

  29. Norouzi-Gh, S., Mehrkish, A., Fallah, M. M. H.: Constrained visual predictive control of tendon-driven continuum robots. Rob. Auton. Syst., pp. 1–19 (2021)

  30. Verghese, M., Richter, F., Gunn, A., Weissbrod, P., Yip, M.. Model-free visual control for continuum robot manipulators via orientation adaptation. arXiv preprint, arXiv:1909.00450v1, 2019. [Online]. Available: http://arxiv.org/abs/1909.00450

  31. Wang, X., Fang, G., Wang, K., Xie, X., Lee, K.H., Ho, J.D.L., Tang, W.L., Lam, J., Kwok, K.W.: Eye-in-hand visual servoing enhanced with sparse strain measurement for soft continuum robots. IEEE Robot. Autom. Lett. 5(2), 2161–2168 (2020)

    Article  Google Scholar 

  32. Song, K. T., Tsai, H. C.: Visual servoing and compliant motion control of a continuum robot, in Proc. Int. Conf. Control, Autom. Systems, 2018, pp. 734–739, Daegwallyeong, South Korea

  33. Xu, F., Wang, H., Chen, W., Wang, J.: Adaptive visual servoing control for an underwater soft robot. Assem. Autom. 38(5), 669–677 (2018)

    Article  Google Scholar 

  34. Webster, R.J., Swensen, J.P., Romano, J.M., Cowan, N.J.: Closed-Form Differential Kinematics for Concentric-Tube Continuum Robots with Application to Visual Servoing. Springer (2009)

    Book  Google Scholar 

  35. Alambeigi, F., Wang, Z., Hegeman, R., Liu, Y.H., Armand, M.: Autonomous data-driven manipulation of unknown anisotropic deformable tissues using unmodelled continuum manipulators. IEEE Robot. Autom. Lett. 4(2), 254–261 (2019)

    Article  Google Scholar 

  36. Walker, I.D.: Continuous backbone ‘continuum’ robot manipulators. Int. Sch. Res. Not. 2013, 1–19 (2013)

    Article  Google Scholar 

  37. Ganji, Y., Janabi-Sharifi, F.: Kinematic characterization of a cardiac ablation catheter, pp. 1876–1881. Proc. IEEE Int. Conf. Intell. Robots Syst., San Diego (2007)

    Google Scholar 

  38. Jones, B.A., Walker, I.D.: A new approach to jacobian formulation for a class of multi-section continuum robots, pp. 3279–3284. Proc. Int. Conf. Robot. Autom., Barcelona (2005)

    Google Scholar 

  39. Ganji, Y., Janabi-Sharifi, F.: Catheter kinematics for intracardiac navigation. IEEE Trans. Biomed. Eng. 56(3), 621–632 (2009)

    Article  Google Scholar 

  40. Webster III, R.J., Rucker, D.C.: Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE Trans. Robot. 27(6), 1033–1044 (2011)

    Article  Google Scholar 

  41. Dehghani, M., Moosavian, S.A.A.: Modeling and control of a planar continuum robot, pp. 966–971. Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, Budapest (2011)

    Google Scholar 

  42. Chaumette, F., Hutchinson, S.: Visual servo control. I. Basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  43. Gans, N.R., Hutchinson, S.A.: Stable visual servoing through hybrid switched-system control. IEEE Trans. Robot. 23(3), 530–540 (2007)

    Article  Google Scholar 

  44. Zhang, G. X., Tanwani, A.: ISS Lyapunov functions for cascade switched systems and sampled-data control, arXiv, 2019

  45. K. Morken, Numerical Algorithms and Digital Representation, 1st Ed. University of Oslo, 2010

  46. Wedin, P.-Å.: Perturbation theory for pseudo-inverses. BIT Numer. Math. 13(2), 217–232 (1973)

    Article  MathSciNet  Google Scholar 

  47. Petersen, K.B., Pedersen, M.S.: The Matrix Cookbook. Technical Univ. Denmark, Tech. Rep., Kongens Lyngby (2012)

    Google Scholar 

  48. Corke, P. I.: Robotics, Vision & Control. Springer, (2011)

  49. Renda, F., Boyer, F., Dias, J., Seneviratne, L.: Discrete Cosserat approach for multi-section soft manipulator dynamics. IEEE Trans. Robot. 34, 1518–1533 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by Natural Sciences and Engineering Research Council of Canada through Discovery Grant # 2017-06930 and Ryerson Dean of Engineering and Architectural Science Research Fund.

Code Availability

None.

Funding

This work was sponsored by National Sciences and Engineering Research Council of Canada (NSERC) through Discovery Grant #2017–06930.

Author information

Authors and Affiliations

Authors

Contributions

S. Norouzi-Ghazbi developed formulation and simulations and authored the manuscript. F. Janabi-Sharifi supervised S. Norouzi-Ghazbi in problem formulation and control development and participated in the authorship of the manuscript.

Corresponding author

Correspondence to Farrokh Janabi-Sharifi.

Ethics declarations

Conflicts of Interest/Competing Interests

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi-Ghazbi, S., Janabi-Sharifi, F. A Switching Image-Based Visual Servoing Method for Cooperative Continuum Robots. J Intell Robot Syst 103, 42 (2021). https://doi.org/10.1007/s10846-021-01435-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01435-w

Keywords

Navigation