Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Exploring Liposomes for Lung Cancer Therapy

Volume 39, Issue 4, 2022, pp. 1-47
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021037912
Get accessDownload

ABSTRACT

Cancer is referred to as a pleiotropic disease-causing approximately 9.6 million deaths in 2018. Among all cancers, lung cancer was the leading cause of death in 2017, and 12% of fatalities were alone due to lung cancer. The associated risk factors in lung cancer include smoking (80-85%), chronic inflammation in the lungs, COPD, pulmonary fibrosis, environmental and occupational exposure to nickel, arsenic, chromates, etc. Early diagnosed patients' treatment plan includes chemotherapy, immunotherapy, radiotherapy, surgery, and tumor ablation. Many sorts of drug delivery carriers have been used in the past, usually in targeted chemotherapy. Liposomes are spherical shape vesicles containing a lipid bilayer and aqueous core, with potency to encapsulate both hydrophobic and hydrophilic drugs with minimal toxicity. These vesicles have a particle size of 0.02-1000 μm allowing selective passive targeting to the tumor's deeper tissues. Current publications on liposomes highlight their acceptance and best choice among all systems to deliver synthetic and herbal drugs to the lungs. This review focuses on many aspects, which include an in-depth analysis of potential anticancer drugs that have utilized the advantages of liposomes for effective lung carcinomatherapy and devices used to deliver the active agents to the pulmonary tissues. Investigations on ongoing, approved, and failed clinical trials and patents on products related to lung cancer have been highlighted to provide a critical review on the subject.

REFERENCES
  1. Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 2015;142:19-25.

  2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020;70(3):145-64.

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. doi: 10.1002/ijc.29210. Epub 2014 Oct 9. PMID: 25220842.

  4. Yang Z, Ma Y, Zhao H, Yuan Y, Kim, BY. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1590.

  5. Rhim JS. Viruses, oncogenes, and cancer. Cancer Detect Prevent. 1988;11(3-6):139.

  6. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1(2):157-62.

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-74.

  8. Song Y, Zhou B, Du X, Wang Y, Zhang J, Ai Y, Xia Z, Zhao G. 2020. Folic acid (F.A.)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother. 2020;125:109561.

  9. Keith RL, Miller YE. Lung cancer chemoprevention: current status and future prospects. Nat Rev Clin Oncol. 2013;10(6):334.

  10. Araujo LH, Horn L, Merritt RE, Shilo K, Xu-Welliver M, Carbone DP. Cancer of the lung: Non-small cell lung cancer and small cell lung cancer. In: Niederhuber JE, Armitage JO, Kastan MB, Doroshow JH, Tepper JE, editors. Abeloff's clinical oncology. 6th ed. Philadelphia, PA: Elsevier; 2020. p. 1108-58.

  11. Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: A chemopreventive role in lung cancer. ACS Omega. 2020;5(34):21550-60.

  12. Sajid M, Yan C, Li D, Merugu SB, Negi H, Khan MR. Potent anticancer activity of Alnus nitida against lung cancer cells; in vitro and in vivo studies. Biomed Pharmacother. 2019;110:254-64.

  13. Dong J, Li B, Lin D, Zhou Q, Huang D. Advances in targeted therapy and immunotherapy for non-small cell lung cancer based on accurate molecular typing. Front Pharmacol. 2019;10:230.

  14. Tran P, Lee SE, Kim DH, Pyo YC, Park JS. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Invest. 2020;50(3):261-70.

  15. Deng Y, Huang H, Chen M, Chen G, Zou W, Zhao Y, Zhao Q. Comprehensive effects of near-infrared multifunctional liposomes on cancer cells. Molecules. 2020;25(5):1098.

  16. Stephen BJ, Suchanti S, Mishra R Singh A. Cancer nanotechnology in medicine: A promising approach for cancer detection and diagnosis. Crit Rev Ther Drug Carrier Syst. 2020;37(4): 375-405.

  17. Karpuz M, Silindir-Gunay M, Ozer AY. Clinical applications of nanosized drug-delivery systems in lung cancer imaging and therapy. Crit Rev Ther Drug Carrier Syst. 2020;37(5):435-71.

  18. Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264.

  19. Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32-45.

  20. Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3-9.

  21. Kesharwani P, editor. Nanotechnology-based targeted drug delivery systems for lung cancer. Academic Press; 2019.

  22. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

  23. Jain A, Tiwari A, Verma A, Saraf S, Jain SK. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug Carrier Syst. 2020;37(2):105-34.

  24. Willis L, Hayes D, Mansour HM. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung. 2012;190(3):251-62.

  25. Lasic DD, Papahadjopoulos D, editors. Medical applications of liposomes. Amsterdam, Netherlands: Elsevier; 1998.

  26. Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomed. 2009;4:299.

  27. Zhao W, Zhuang S, Qi XR. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomed. 2011;6:3087.

  28. Lila ASA, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res. 2010;27(7):1171-83.

  29. Olusanya TO, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.

  30. Qagdas M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. App Nanotechnology Drug Deliv. 2014:1-100.

  31. Hashemzadeh H, Javadi H, Darvishi MH. Study of structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation. Sci Rep. 2020;10(1):1837.

  32. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anticancer drugs. Anticancer Drugs. 2005;16(7):691-707.

  33. Torchilin PV, Torchilin VP, Torchilin V, Weissig V, editors. Liposomes: A practical approach. Oxford and New York: Oxford University Press; 2003.

  34. Rao LS. Preparation of liposomes on the industrial scale: Problems and perspectives. In: Liposome technology. 1st ed. CRC Press; 2019. p. 247-57.

  35. Shashi K, Satinder K, Bharat P. A complete review on: Liposomes. Int Res J Pharm. 2012;3(7);10-6.

  36. Gregoriadis G, editor. Liposome technology. CRC Press; 1992.

  37. Dua JS, Rana AC, Bhandari AK. Liposome: Methods of preparation and applications. Int J Pharm Stud Res. 2012;3(2):14-20.

  38. Enoch HG, Strittmatter P. Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles. Proc Natl Acad Sci U S A. 1979;76(1):145-9.

  39. Sui Y, Li S, Shi P, Wu Y, Li Y, Chen W, Huang L, Yao H, Lin X. Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. J Ethnopharmacol. 2016;190:261-71.

  40. Chen B, Wang X, Zhang Y, Huang K, Liu H, Xu D, Li S, Liu Q, Huang J, Yao H, Lin, X. Improved solubility, dissolution rate, and oral bioavailability of main biflavonoids from Selaginella doederleinii extract by amorphous solid dispersion. Drug Delivery. 2020;27(1):309-22.

  41. Li S, Zhao M, Li, Y, Sui Y, Yao H, Huang L, Lin X. Preparative isolation of six anti-tumour biflavonoids from Selaginella doederleinii Hieron by high-speed counter-current chromatography. Phytochem Anal. 2014;25(2):127-33.

  42. Negbi M. Saffron cultivation: Past, present and future prospects. In: Saffron. CRC Press; 1999. p. 14-28.

  43. Mirhadi E, Nassirli H, Malaekeh-Nikouei B. An updated review on therapeutic effects of nanoparticle-based formulations of saffron components (safranal, crocin, and crocetin). J Pharm Invest. 2020;50(1):47-58.

  44. Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol. 2009;47(8):1909-13.

  45. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Medica. 2013;79(6):447-51.

  46. Hafezi Ghahestani Z, Alebooye Langroodi F, Mokhtarzadeh A, Ramezani, M, Hashemi, M. Evaluation of anticancer activity of PLGA nanoparticles containing crocetin. Artif Cells Nanomed Biotechnol. 2017;45(5):955-60.

  47. Tan W, Li Y, Chen M, Wang Y. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int J Nanomed. 2011;6:1773.

  48. Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B. 2018;8(3):440-8.

  49. Ibrahim S, Tagami T, Kishi T, Ozeki T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int J Pharm. 2018:540(1-2):40-9.

  50. Mullauer FB, van Bloois L, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kessler JH. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs. 2011;22(3):223-33.

  51. Jin X, Zhou J, Zhang Z, Lv H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 3):S931-42.

  52. Spencer CM, Faulds D. Paclitaxel. Drugs. 1994;48(5):794-847.

  53. Deng Y, Huang H, Chen M, Chen G, Zou W, Zhao Y, Zhao Q. Comprehensive effects of near-infrared multifunctional liposomes on cancer cells. Molecules. 2020;25(5):1098.

  54. Mignet N, Seguin J, Romano MR, Brulle L, Touil YS, Scherman D, Bessodes M, Chabot GG. Development of a liposomal formulation of the natural flavonoid fisetin. Int J Pharm. 2012;423(1): 69-76.

  55. Wang J, Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med. 2018;15(3):2667-73.

  56. Bahadori F, Topju G, Eroglu MS, Onyuksel H. A new lipid-based nano formulation of vinorelbine. AAPS PharmSciTech. 2014;15(5):1138-48.

  57. Wolfram J, Scott B, Boom K, Shen J, Borsoi C, Suri K, Grande R, Fresta M, Celia C, Zhao, Y, Shen H. 2016. Hesperetin liposomes for cancer therapy. Curr Drug Deliv. 2016;13(5):711.

  58. Alavi M, Nokhodchi A. Microformulations and nanoformulations of doxorubicin for improvement of its therapeutic efficiency. Crit Rev Ther Drug Carrier Syst. 2020;37(6):591-611.

  59. Tagami T, Ando Y, Ozeki T. Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A2 for efficient pulmonary drug delivery to lung cancers. Int J Pharm. 2017; 517(1-2):35-41.

  60. Ogawara KI, Un K, Minato K, Tanaka KI, Higaki K, Kimura T. Determinants for in vivo antitumor effects of PEG liposomal doxorubicin: Importance of vascular permeability within tumors. Int J Pharm. 2008;359(1-2):234-40.

  61. Skupin-Mrugalska P, Minko T. Development of liposomal vesicles for osimertinib delivery to EGFR mutation-positive lung cancer cells. Pharmaceutics. 2020;12(10):939.

  62. van Veggel B, de Langen AJ, Hashemi SM, Monkhorst K, Heideman DA, Thunnissen E, Smit EF. Afatinib and cetuximab in four patients with EGFR Exon 20 insertion-positive advanced NSCLC. J Thorac Oncol. 2018;13(8):1222-6.

  63. Lu X, Liu S, Han M, Yang X, Sun K, Wang H, Mu H, Du Y, Wang A, Ni L, Zhang C. Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel strategy targeting the epidermal growth factor receptor for treatment of non-small-cell lung cancer. Int J Pharm. 2019;560:126-35.

  64. Parvathaneni V, Kulkarni NS, Shukla, SK, Farrales PT, Kunda NK, Muth A, Gupta V. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics. 2020;12(3):206.

  65. Gandhi M, Pandya T, Gandhi R, Patel S, Mashru R, Misra A, Tandel, H. Inhalable liposomal dry powder of gemcitabine-HCl: Formulation, in vitro characterization and in vivo studies. Int J Pharm. 2015;496(2):886-95.

  66. Zhang T, Wang R, Li M, Bao J, Chen Y, Ge Y, Jin Y. Comparative study of intratracheal and oral gefitinib for the treatment of primary lung cancer. Eur J Pharm Sci. 2020;149:105352.

  67. Iwase Y, Maitani Y. Preparation and in vivo evaluation of liposomal everolimus for lung carcinoma and thyroid carcinoma. Biol Pharm Bull. 2012;35(6):975-9.

  68. Cao C, Wang Q, Liu Y. Lung cancer combination therapy: Doxorubicin and P-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des Devel Ther. 2019;13;1087.

  69. Jiang QQ, Fan LY, Yang GL, Guo WH, Hou WL, Chen LJ, Wei, YQ. Improved therapeutic effectiveness by combining liposomal Honokiol with cisplatin in lung cancer model. BMC Cancer. 2008;8(1):242.

  70. Yang YT, Shi Y, Jay M, Di Pasqua AJ. Enhanced toxicity of cisplatin with chemosensitizer phenethyl isothiocyanate toward non-small cell lung cancer cells when delivered in liposomal nanoparticles. Chem Res Toxicol. 2014;27(6):946-8.

  71. Sun M, Shi Y, Dang UJ, Di Pasqua AJ, Phenethyl isothiocyanate and cisplatin co-encapsulated in a liposomal nanoparticle for treatment of non-small cell lung cancer. Molecules. 2019;24(4):801.

  72. Cao M, Long M, Chen Q, Lu Y, Luo Q, Zhao Y, Lu A, Ge C, Zhu L, Chen Z. Development of P-elemene and cisplatin co-loaded liposomes for effective lung cancer therapy and evaluation in patient-derived tumor xenografts. Pharm Res. 2019;36(8):121.

  73. Arthur P, Patel N, Surapaneni SK, Mondal A, Gebeyehu A, Bagde A, Kutlehria S, Nottingham E, Singh M. Targeting lung cancer stem cells using combination of Tel and Docetaxel liposomes in 3D cultures and tumor xenografts. Toxicol Appl Pharmacol. 2020;401:115112.

  74. Syaefudin JA, Rosiyana L, Setyani A, Khodijah S. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549. Earth Environ Sci. 2016;31:1-5.

  75. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Medica. 2013;79(06):447-51.

  76. Sailor G, Seth AK, Parmar G, Chauhan S, Javia A. Formulation and in vitro evaluation of berberine containing liposome optimized by 32 full factorial designs. J Appl Pharm Sci. 2015;5(7):23-8.

  77. Wu J, Niu Y, Jiao Y, Chen Q. Fungal chitosan from Agaricus bisporus (Lange) Sing. Chaidam increased the stability and antioxidant activity of liposomes modified with biosurfactants and loading betulinic acid. Int J Biol Macromol. 2019;123:291-9.

  78. Liang P, Wu H, Zhang Z, Jiang S, Lv H. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int J Pharm. 2020;583:119375.

  79. Zhang HY, Tang X, Li HY, Liu XL. A lipid microsphere vehicle for vinorelbine: Stability, safety and pharmacokinetics. Int J Pharm. 2008;348(1-2):70-9.

  80. Zhao L, Ye Y, Li J, Wei, YM. Preparation and the in vivo evaluation of paclitaxel liposomes for lung targeting delivery in dogs. J Pharm Pharmacol. 2011;63(1):80-6.

  81. Vyas SP, Sakthivel T. Pressurized pack-based liposomes for pulmonary targeting of isoprenaline: Development and characterization. J Microencapsul. 1994;11(4):373-80.

  82. Alouache AI, Kellaway IW, Taylor KMG, Rogueda P. Stability kinetics of HFA suspensions prepared with a fluoroalcohol and PEG-phospholipids. J Aerosol Med. 2006;20:373.

  83. Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 2016;25(Suppl 2):60-72.

  84. Gandhi M, Pandya T, Gandhi R, Patel S, Mashru R, Misra A, Tandel, H. Inhalable liposomal dry powder of gemcitabine-HCl: Formulation, in vitro characterization and in vivo studies. Int J Pharm. 2015;496(2):886-95.

  85. Lehofer B, Bloder F, Jain PP, Marsh LM, Leitinger G, Olschewski H, Leber R, Olschewski A, Prassl R. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics. Eur J Pharm Biopharm. 2014;88(3):1076-85.

  86. Ong HX, Traini D, Young PM. Liposomes for inhalation. In: Dhand R, Rothen-Rutishauser B, Hickey JA, editors. The ISAM textbook of aerosol medicine. International Society of Aerosols in Medicine (ISAM)/Mary Ann Libert Publishing, Inc.; 2015. p. 303-29.

  87. Tamura G. Comparison of the aerosol velocity of Respimat soft mist inhaler and seven pressurized metered dose inhalers. Allergol Int. 2015;64(4):390-2.

  88. Verschraegen CF. Aerosolized liposomal 9-Nitro-20 (S)-Camptothecin in patients with advanced malignancies in the lungs. Pneumologie. 2006;60(7):A2.

  89. Wittgen BP, Kunst PW, Van Der Born K, Van Wijk AW, Perkins W, Pilkiewicz FG, Perez-Soler R, Nicholson S, Peters GJ, Postmus PE. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res. 2007;13(8):2414-21.

  90. Koshkina NV, Gilbert BE, Waldrep JC, Seryshev A, Knight V. Distribution of camptothecin after delivery as a liposome aerosol or following intramuscular injection in mice. Cancer Chemother Pharmacol. 1999;44(3):187-92.

  91. Skubitz KM, Anderson PM. Inhalational interleukin-2 liposomes for pulmonary metastases: A phase I clinical trial. Anticancer Drugs. 2000;11(7):555-63.

  92. Koshkina NV, Golunski E, Roberts LE, Gilbert BE, Knight V. Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. J Aerosol Med. 2004;17(1):7-14.

  93. Garbuzenko OB, Saad M, Pozharov, VP, Reuhl KR, Mainelis G, Minko T. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci U S A. 2010;107(23):10737-42.

  94. Lawson KA, Anderson K, Snyder RM, Simmons-Menchaca M, Atkinson J, Sun LZ, Bandyopadhyay, A, Knight V, Gilbert BE, Sanders BG, Kline K. Novel vitamin E analogue and 9-nitro-camptothecin administered as liposome aerosols decrease syngeneic mouse mammary tumor burden and inhibit metastasis. Cancer Chemother Pharmacol. 2004;54(5):421-31.

  95. Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: The influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 2014;11(1):44.

  96. Khanna C, Hasz DE, Klausner JS, Anderson PM. Aerosol delivery of interleukin 2 liposomes is nontoxic and biologically effective: Canine studies. Clin Cancer Res. 1996;2(4):721-34.

  97. Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv. 2012;25(6):310-8.

  98. Gautam A, Waldrep JC, Densmore CL, Koshkina N, Melton S, Roberts L, Gilbert B, Knight V. Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther. 2002;9(5):353-7.

  99. Heidarli E, Dadashzadeh S, Haeri A. State of the art of stimuli-responsive liposomes for cancer therapy. Iran J Pharm Res. 2017;16(4):1273.

  100. Koning GA, EggermontAM, Lindner LH, ten Hagen, TL. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res. 2010;27(8):1750-4.

  101. Lee JH, Kim JW, Cheon J. Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cell. 2013;35(4):274-84.

  102. Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine. 2014;9(4):501-16.

  103. Hervault A, Thanh, NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553-73.

  104. Langereis S, Geelen T, Grull H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR Biomed. 2013;26(7):728-44.

  105. Bothun GD, Lelis A, Chen Y, Scully K, Anderson LE, Stoner MA. Multicomponent folate-targeted magnetoliposomes: Design, characterization, and cellular uptake. Nanomedicine. 2011;7(6):797-805.

  106. Zheng S, Han J, Le VH, Park JO, Park S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf B Biointerfaces. 2017;154:104-14.

  107. Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, Cho JH, Park JH, Kim K, Kwon, IC, Kim DD. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release. 2014;174:98-108.

  108. Yan C, Wu Y, Feng J, Chen W, Liu X, Hao P, Yang R, Zhang J, Lin B, Xu Y, Liu R. Anti-avp3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis. Int J Nanomed. 2013l;8:245.

  109. Soenen SJ, Brisson AR, Jonckheere E, Nuytten N, Tan S, Himmelreich U, De Cuyper M. The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials. 2011;32(6):1748-58.

  110. Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J Drug Target. 2015;23(7-8):605-18.

  111. Yavlovich A, Smith B, Gupta K, Blumenthal R, Puri, A. Light-sensitive lipid-based nanoparticles for drug delivery: Design principles and future considerations for biological applications. Mol Membr Biol. 2010;27(7):364-81.

  112. Leung SJ, Romanowski M. Light-activated content release from liposomes. Theranostics. 2012;2(10):1020.

  113. Allison RR. Photodynamic therapy: Oncologic horizons. Future Oncol. 2014;10(1):123-4.

  114. Voon SH, Kiew LV, Lee HB, Lim SH, Noordin MI, Kamkaew A, Burgess K, Chung LY. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. Small. 2014;10(24):4993-5013.

  115. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4): 1990-2042.

  116. Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev. 2012;64(11):1005-20.

  117. Chandra B, Mallik S, Srivastava DK. Design of photocleavable lipids and their application in liposomal "uncorking." Chem Commun. 2005;(24):3021-3.

  118. Chandra B, Subramaniam R, Mallik S, Srivastava DK. Formulation of photocleavable liposomes and the mechanism of their content release. Org Biomol Chem. 2006;4(9):1730-40.

  119. De Matos MB, Deckers R, van Elburg B, Lajoinie G, de Miranda BS, Versluis M, Schiffelers R, Kok RJ. Ultrasound-sensitive liposomes for triggered macromolecular drug delivery: Formulation and in vitro characterization. Front Pharmacol. 2019;10:1463.

  120. Husseini GA, Pitt WG, Martins AM. Ultrasonically triggered drug delivery: Breaking the barrier. Colloids Surf B Biointerfaces. 2014;123:364-86.

  121. Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target. 2015;23(1):16-42.

  122. Jhaveri A, Shvets V, Torchilin V. Stimuli-sensitive nanopreparations: Overview. In: Torchilin VP, editor. Smart pharmaceutical nanocarriers. London: Imperial College Press; 2015. p. 1-31.

  123. Ibsen S, Benchimol M, Simberg D, Schutt C, Steiner J, Esener S. A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload. J Control Release. 2011;155(3):358-66.

  124. Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MCP. On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev. 2004;56(7):947-65.

  125. Ferreira DDS, Lopes SCDA, Franco MS, Oliveira MC. pH-sensitive liposomes for drug delivery in cancer treatment. Ther Deliv. 2013;4(9):1099-123.

  126. Romero-Garcia S, Lopez-Gonzalez JS, B'ez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. Tumor cell metabolism: An integral view. Cancer Biol Ther. 2011;12(11):939-48.

  127. Hernandez A, Serrano G, Herrera-Palau R, Perez-Castineira JR, Serrano A. Intraorganellar acidification by V-ATPases: A target in cell proliferation and cancer therapy. Recent Pat Anticancer Drug Discov. 2010;5(2):88-98.

  128. Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv. 2015;22(3):231-42.

  129. Fouladi F, Steffen KJ, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem. 2017;28(4):857-68.

  130. Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev. 2012;41(18):5933-49.

  131. Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale. 2014;6(21):12273-86.

  132. Zuo J, Tong L, Du L, Yang M, Jin Y. Biomimetic nanoassemblies of 1-O-octodecyl-2-conjugated linoleoyl-sn-glycero-3-phosphatidyl gemcitabine with phospholipase A2-triggered degradation for the treatment of cancer. Colloids Surf B Biointerfaces. 2017;152:467-74.

  133. Quach ND, Mock JN, Scholpa NE, Eggert MW, Payre C, Lambeau G, Arnold RD, Cummings BS. Role of the phospholipase A2 receptor in liposome drug delivery in prostate cancer cells. Mol Pharm. 2014;11(10):3443-51.

  134. Yadav L, Puri N, Rastogi V, Satpute P, Ahmad R, Kaur G. Matrix metalloproteinases and cancer-roles in threat and therapy. Asian Pac J Cancer Prev. 2014;15(3):1085-91.

  135. Elegbede AI, Banerjee J, Hanson AJ, Tobwala S, Ganguli B, Wang R, Lu X, Srivastava DK, Mallik S. Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc. 2008;130(32):10633-42.

  136. Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, Cao DY, Qi XR. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials. 2013;34(28):6976-91.

  137. Aggarwal N, Sloane BF. Cathepsin B: Multiple roles in cancer. Proteomics Clin Appl. 2014;8(5-6): 427-37.

  138. Song SJ, Lee S, Lee Y, Choi JS. Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery. Eur J Pharm Sci. 2016;91:20-30.

  139. Aoyama K, Nakaki T. Glutathione in cellular redox homeostasis: Association with the excitatory amino acid carrier 1 (EAAC1). Molecules. 2015;20(5):8742-58.

  140. Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis CD, Marinari UM, Pronzato MA, Traverso N, Domenicotti C. Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxid Med Cell Longev. 2016;2016:6235641.

  141. Heidarli E, Dadashzadeh S, Haeri A. State of the art of stimuli-responsive liposomes for cancer therapy. Iran J Pharm Res. 2017;16(4):1273.

  142. Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5):e1450.

  143. Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv. 2021;18(2):205-27.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain