Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit

Abstract

A coherent ensemble of spins interfaced with a proxy qubit is an attractive platform to create many-body coherences and probe the regime of collective excitations. An electron spin qubit in a semiconductor quantum dot can act as such an interface to the dense nuclear spin ensemble within the quantum dot consisting of multiple high-spin atomic species. Earlier work has shown that the electron can relay properties of its nuclear environment through the statistics of its mean-field interaction with the total nuclear polarization, namely its mean and variance. Here, we demonstrate a method to probe the spin state of a nuclear ensemble that exploits its response to collective spin excitations, enabling a species-selective reconstruction beyond the mean field. For the accessible range of optically prepared mean fields, the reconstructed populations indicate that the ensemble is in a non-thermal, correlated nuclear state. The sum over reconstructed species-resolved polarizations exceeds the classical prediction threefold. This stark deviation follows from a spin ensemble that contains inter-particle coherences, and serves as an entanglement witness that confirms the formation of a dark many-body state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proxy qubit interface to spin states of a nuclear ensemble.
Fig. 2: Magnon sideband asymmetry.
Fig. 3: From sideband asymmetry to species-resolved spin populations.
Fig. 4: Fingerprint of a nuclear dark state.

Similar content being viewed by others

Data availability

All data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

Code availability

All code that was used in the analysis of data shown in this paper is available from the corresponding authors on reasonable request.

References

  1. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  2. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article  ADS  Google Scholar 

  3. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  ADS  Google Scholar 

  4. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  ADS  Google Scholar 

  5. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  Google Scholar 

  6. Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738–742 (2015).

    Article  Google Scholar 

  7. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  8. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  ADS  Google Scholar 

  9. Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    Article  ADS  Google Scholar 

  10. Car, B., Veissier, L., Louchet-Chauvet, A., Le Gouët, J.-L. & Chanelière, T. Selective optical addressing of nuclear spins through superhyperfine interaction in rare-Earth doped solids. Phys. Rev. Lett. 120, 197401 (2018).

    Article  ADS  Google Scholar 

  11. Metsch, M. H. et al. Initialization and readout of nuclear spins via a negatively charged silicon-vacancy center in diamond. Phys. Rev. Lett. 122, 190503 (2019).

    Article  ADS  Google Scholar 

  12. Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

    Article  ADS  Google Scholar 

  13. Hensen, B. et al. A silicon quantum-dot-coupled nuclear spin qubit. Nat. Nanotechnol. 15, 13–17 (2020).

    Article  ADS  Google Scholar 

  14. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  MATH  Google Scholar 

  15. Fleischhauer, M., Imamoglu, A. & Marangos, J. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  16. Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3. Phys. Rev. Lett. 84, 5868–5871 (2000).

    Article  ADS  Google Scholar 

  17. Muñoz, A., Klimov, A. B., Grassl, M. & Sánchez-Soto, L. L. Tomography from collective measurements. Quantum Inf. Process. 17, 286 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Simon, J., Tanji, H., Thompson, J. K. & Vuletić, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007).

    Article  ADS  Google Scholar 

  19. Mlynek, J. A., Abdumalikov, A. A., Eichler, C. & Wallraff, A. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186 (2014).

    Article  ADS  Google Scholar 

  20. Casabone, B. et al. Enhanced quantum interface with collective ion-cavity coupling. Phys. Rev. Lett. 114, 023602 (2015).

    Article  ADS  Google Scholar 

  21. Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

    Article  ADS  Google Scholar 

  22. Dudin, Y. O., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790–794 (2012).

    Article  Google Scholar 

  23. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  24. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  25. Wüst, G. et al. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nat. Nanotechnol. 11, 885–889 (2016).

    Article  ADS  Google Scholar 

  26. Waeber, A. M. et al. Pulse control protocols for preserving coherence in dipolar-coupled nuclear spin baths. Nat. Commun. 10, 3157 (2019).

    Article  ADS  Google Scholar 

  27. Chekhovich, E. A., da Silva, S. F. & Rastelli, A. Nuclear spin quantum register in an optically active semiconductor quantum dot. Nat. Nanotechnol. 15, 999–1004 (2020).

    Article  ADS  Google Scholar 

  28. Coish, W. A. & Baugh, J. Nuclear spins in nanostructures. Phys. Stat. Sol. (B) 246, 2203–2215 (2009).

    Article  ADS  Google Scholar 

  29. Imamoglu, A., Knill, E., Tian, L. & Zoller, P. Optical pumping of quantum-dot nuclear spins. Phys. Rev. Lett. 91, 017402 (2003).

    Article  ADS  Google Scholar 

  30. Taylor, J. M., Imamoglu, A. & Lukin, M. D. Controlling a mesoscopic spin environment by quantum bit manipulation. Phys. Rev. Lett. 91, 246802 (2003).

    Article  ADS  Google Scholar 

  31. Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003).

    Article  ADS  Google Scholar 

  32. Giedke, G., Taylor, J. M., D’Alessandro, D., Lukin, M. D. & Imamoglu, A. Quantum measurement of a mesoscopic spin ensemble. Phys. Rev. A 74, 032316 (2006).

    Article  ADS  Google Scholar 

  33. Dyakonov, M. I. & Perel, V. I. Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory. Sov. Phys. JETP 65, 362–375 (1973).

    Google Scholar 

  34. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  35. Braun, P. F. et al. Bistability of the nuclear polarization created through optical pumping in In1 − xGaxAs quantum dots. Phys. Rev. B 74, 245306 (2006).

    Article  ADS  Google Scholar 

  36. Eble, B. et al. Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot. Phys. Rev. B 74, 081306 (2006).

    Article  ADS  Google Scholar 

  37. Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).

    Article  ADS  Google Scholar 

  38. Tartakovskii, A. I. et al. Nuclear spin switch in semiconductor quantum dots. Phys. Rev. Lett. 98, 026806 (2007).

    Article  ADS  Google Scholar 

  39. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys. 5, 758–763 (2009).

    Article  Google Scholar 

  40. Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

    Article  ADS  Google Scholar 

  41. Puebla, J. et al. Dynamic nuclear polarization in InGaAs/GaAs and GaAs/AlGaAs quantum dots under nonresonant ultralow-power optical excitation. Phys. Rev. B 88, 045306 (2013).

    Article  ADS  Google Scholar 

  42. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  ADS  Google Scholar 

  43. Vink, I. T. et al. Locking electron spins into magnetic resonance by electron nuclear feedback. Nat. Phys. 5, 764–768 (2009).

    Article  Google Scholar 

  44. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. & Yacoby, A. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

    Article  ADS  Google Scholar 

  45. Sun, B. et al. Persistent narrowing of nuclear-spin fluctuations in InAs quantum dots using laser excitation. Phys. Rev. Lett. 108, 187401 (2012).

    Article  ADS  Google Scholar 

  46. Chow, C. M. et al. Nonlocal nuclear spin quieting in quantum dot molecules: optically induced extended two-electron spin coherence time. Phys. Rev. Lett. 117, 077403 (2016).

    Article  ADS  Google Scholar 

  47. Éthier-Majcher, G. et al. Improving a solid-state qubit through an engineered mesoscopic environment. Phys. Rev. Lett. 119, 130503 (2017).

    Article  ADS  Google Scholar 

  48. Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nat. Phys. 11, 1005–1008 (2015).

    Article  Google Scholar 

  49. Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    Article  ADS  Google Scholar 

  50. Botzem, T. et al. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs. Nat. Commun. 7, 11170 (2016).

    Article  ADS  Google Scholar 

  51. Bethke, P. et al. Measurement of backaction from electron spins in a gate-defined GaAs double quantum dot coupled to a mesoscopic nuclear spin bath. Phys. Rev. Lett. 125, 047701 (2020).

    Article  ADS  Google Scholar 

  52. Jackson, D. M. et al. Quantum sensing of a coherent single spin excitation in a nuclear ensemble. Nat. Phys 17, 585–590 (2021).

    Article  Google Scholar 

  53. Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article  ADS  Google Scholar 

  54. Bodey, J. H. et al. Optical spin locking of a solid-state qubit. npj Quantum Inf. 5, 95 (2019).

    Article  ADS  Google Scholar 

  55. Vitagliano, G., Hyllus, P., Egusquiza, I. L. & Tóth, G. Spin squeezing inequalities for arbitrary spin. Phys. Rev. Lett. 107, 240502 (2011).

    Article  ADS  Google Scholar 

  56. Biasiol, G. & Heun, S. Compositional mapping of semiconductor quantum dots and rings. Phys. Rep. 500, 117–173 (2011).

    Article  ADS  Google Scholar 

  57. Chekhovich, E. A. et al. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots. Nat. Mater. 16, 982–986 (2017).

    Article  ADS  Google Scholar 

  58. Denning, E. V., Gangloff, D. A., Atatüre, M., Mørk, J. & Le Gall, C. Collective quantum memory activated by a driven central spin. Phys. Rev. Lett. 123, 140502 (2019).

    Article  ADS  Google Scholar 

  59. Kessler, E. M. et al. Dissipative phase transition in a central spin system. Phys. Rev. A 86, 012116 (2012).

    Article  ADS  Google Scholar 

  60. Zhu, B., Marino, J., Yao, N. Y., Lukin, M. D. & Demler, E. A. Dicke time crystals in driven-dissipative quantum many-body systems. N. J. Phys. 21, 073028 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. R. Cooper and D. M. Kara for helpful discussions. We acknowledge support from the US Office of Naval Research Global (N62909-19-1-2115), ERC PHOENICS (617985), EPSRC NQIT (EP/M013243/1), EU H2020 FET-Open project QLUSTER (DLV-862035) and the Royal Society (EA/181068). Samples were grown in the EPSRC National Epitaxy Facility. D.A.G. acknowledges a St John’s College Fellowship and C.L.G. a Royal Society Dorothy Hodgkin Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.A.G., C.L.G. and M.A. conceived the experiments. J.H.B., C.B., D.A.G., G.E.-M. and C.L. carried out the experiments. J.H.B., L.Z. and D.A.G. performed the data analysis. L.Z. performed the theory and simulations with guidance from C.L.G. and D.A.G. E.C. and M.H. grew the material. All authors contributed to the discussion of the analysis and the results. All authors participated in preparing the manuscript.

Corresponding authors

Correspondence to Claire Le Gall or Mete Atatüre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Hendrik Bluhm, Alex Greilich and Gloria Platero for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Discussion and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangloff, D.A., Zaporski, L., Bodey, J.H. et al. Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021). https://doi.org/10.1038/s41567-021-01344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01344-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing