Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optomechanical interface between telecom photons and spin quantum memory

Abstract

Quantum networks enable a broad range of practical and fundamental applications spanning from distributed quantum computing to sensing and metrology. A cornerstone of such networks is an interface between telecom photons and quantum memories, which has proven challenging for the case of spin-mechanical memories. Here we demonstrate a novel approach based on cavity optomechanics that utilizes the susceptibility of spin qubits to strain. We use it to control electronic spins of nitrogen vacancy centres in diamond with photons in the 1,550 nm telecommunication wavelength band. This method does not involve qubit optical transitions and is insensitive to spectral diffusion. Furthermore, our approach can be applied to solid-state qubits in a wide variety of materials, expanding the toolbox for quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The device and its operating principle.
Fig. 2: Optomechanical characterization of the microdisk resonator.
Fig. 3: NV centres in diamond and spin driving sequence.
Fig. 4: Optomechanical control of NV centres.
Fig. 5: Roadmap for realizing a single-photon spin-optomechanical interface.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 35002 (2017).

    Article  MathSciNet  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  MATH  Google Scholar 

  3. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  4. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  5. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article  ADS  Google Scholar 

  6. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  Google Scholar 

  7. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  Google Scholar 

  8. Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

    Article  ADS  Google Scholar 

  9. Ruf, M., Weaver, M. J., van Dam, S. B. & Hanson, R. Resonant excitation and Purcell enhancement of coherent nitrogen-vacancy centers coupled to a Fabry-Pérot micro-cavity. Phys. Rev. Appl. 15, 024049 (2021).

    Article  ADS  Google Scholar 

  10. Wang, H. & Lekavicius, I. Coupling spins to nanomechanical resonators: toward quantum spin-mechanics. Appl. Phys. Lett. 117, 230501 (2020).

    Article  ADS  Google Scholar 

  11. Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical review: spins and mechanics in diamond. J. Opt. 19, 33001 (2017).

    Article  Google Scholar 

  12. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  13. Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D 52, 353001 (2019).

    Article  Google Scholar 

  14. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  15. Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    Article  ADS  Google Scholar 

  16. Macquarrie, E. R., Gosavi, T. A., Jungwirth, N. R., Bhave, S. A. & Fuchs, G. D. Mechanical spin control of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 111, 227602 (2013).

    Article  ADS  Google Scholar 

  17. Golter, D. A. et al. Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X 6, 41060 (2016).

    Google Scholar 

  18. Whiteley, S. J. et al. Spin-phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

    Article  Google Scholar 

  19. Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).

    Article  ADS  Google Scholar 

  20. Meesala, S. et al. Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers. Phys. Rev. Appl. 5, 34010 (2016).

    Article  Google Scholar 

  21. Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

    Article  ADS  Google Scholar 

  22. Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

    Article  Google Scholar 

  23. Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 7, 879–883 (2011).

    Article  Google Scholar 

  24. Pigeau, B. et al. Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system. Nat. Commun. 6, 8603 (2015).

    Article  ADS  Google Scholar 

  25. Ohta, R. et al. Rare-earth-mediated optomechanical system in the reversed dissipation regime. Phys. Rev. Lett. 126, 47404 (2021).

    Article  ADS  Google Scholar 

  26. Burek, M. J. et al. Diamond optomechanical crystals. Optica 3, 1404–1411 (2016).

    Article  ADS  Google Scholar 

  27. Mitchell, M. et al. Single-crystal diamond low-dissipation cavity optomechanics. Optica 3, 963–970 (2016).

    Article  ADS  Google Scholar 

  28. Cohen, J. D. et al. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522–525 (2015).

    Article  ADS  Google Scholar 

  29. Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).

    Article  Google Scholar 

  30. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 12025 (2011).

    Article  Google Scholar 

  31. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  ADS  Google Scholar 

  32. Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2020).

    Article  Google Scholar 

  33. Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).

    Article  ADS  Google Scholar 

  34. Doherty, M. W. et al The nitrogen-vacancy colour centre in diamond. https://doi.org/10.1016/j.physrep.2013.02.001 (2013).

  35. Soykal, Ö. O., Ruskov, R. & Tahan, C. Sound-based analogue of cavity quantum electrodynamics in silicon. Phys. Rev. Lett. 107, 235502 (2011).

    Article  ADS  Google Scholar 

  36. Yeo, I. et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106–110 (2014).

    Article  ADS  Google Scholar 

  37. Mitchell, M., Lake, D. P. & Barclay, P. E. Realizing Q > 300 000 in diamond microdisks for optomechanics via etch optimization. APL Photon. 4, 16101 (2019).

    Article  ADS  Google Scholar 

  38. Rokhsari, H., Kippenberg, T. J., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).

    Article  ADS  Google Scholar 

  39. Hossein-Zadeh, M. & Vahala, K. J. Observation of injection locking in an optomechanical rf oscillator. Appl. Phys. Lett. 93, 191115 (2008).

    Article  ADS  Google Scholar 

  40. Hong, B. & Hajimiri, A. A general theory of injection locking and pulling in electrical oscillators–part II: amplitude modulation in LC oscillators, transient behavior, and frequency division. IEEE J. Solid State Circuits 54, 2122–2139 (2019).

    Article  ADS  Google Scholar 

  41. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  42. Udvarhelyi, P., Shkolnikov, V. O., Gali, A., Burkard, G. & Pályi, A. Spin–strain interaction in nitrogen-vacancy centers in diamond. Phys. Rev. B 98, 75201 (2018).

    Article  ADS  Google Scholar 

  43. MacQuarrie, E. R. et al. Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator. Optica 2, 233–238 (2015).

    Article  ADS  Google Scholar 

  44. Hong, S. et al. Coherent, mechanical control of a single electronic spin. Nano Lett. 12, 3920–3924 (2012).

    Article  ADS  Google Scholar 

  45. MacQuarrie, E. R., Gosavi, T. A., Bhave, S. A. & Fuchs, G. D. Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator. Phys. Rev. B 92, 224419 (2015).

    Article  ADS  Google Scholar 

  46. Chen, H. Y., MacQuarrie, E. R. & Fuchs, G. D. Orbital state manipulation of a diamond nitrogen-vacancy center using a mechanical resonator. Phys. Rev. Lett. 120, 167401 (2018).

    Article  ADS  Google Scholar 

  47. Lee, K. W. et al. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys. Rev. Appl. 6, 34005 (2016).

    Article  Google Scholar 

  48. Poot, M., Fong, K. Y., Bagheri, M., Pernice, W. H. P. & Tang, H. X. Backaction limits on self-sustained optomechanical oscillations. Phys. Rev. A 86, 53826 (2012).

    Article  ADS  Google Scholar 

  49. Lake, D. P., Mitchell, M., Sukachev, D. D. & Barclay, P. E. Processing light with an optically tunable mechanical memory. Nat. Commun. 12, 663 (2021).

    Article  Google Scholar 

  50. Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).

    Article  ADS  Google Scholar 

  51. Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

    Article  ADS  Google Scholar 

  52. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  ADS  Google Scholar 

  53. Li, P.-B., Zhou, Y., Gao, W.-B. & Nori, F. Enhancing spin–phonon and spin–spin interactions using linear resources in a hybrid quantum system. Phys. Rev. Lett. 125, 153602 (2020).

    Article  ADS  Google Scholar 

  54. Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. Preprint at https://arxiv.org/abs/2012.04108 (2020).

  55. MacQuarrie, E. R., Otten, M., Gray, S. K. & Fuchs, G. D. Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction. Nat. Commun. 8, 14358 (2017).

    Article  ADS  Google Scholar 

  56. Kettler, J. et al. Inducing micromechanical motion by optical excitation of a single quantum dot. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-00814-y (2020)

  57. Ghobadi, R., Wein, S., Kaviani, H., Barclay, P. & Simon, C. Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics. Phys. Rev. A 99, 53825 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alberta Innovates Strategic Research Project (G2018000888), the Canada Foundation for Innovation (CGI Project 36130), the National Research Council Nanotechnology Research Centre, the NSERC Discovery Grant (RGPIN/04535-2016), Strategic Partnership Grant (STPGP/521536-2018, STPGP/493807-2016), Accelerator, CREATE and RTI programmes. We thank H. Jayakumar, J. P. Hadden, T. Masuda and B. Khanaliloo for contributions to the initial setup of the experimental apparatus.

Author information

Authors and Affiliations

Authors

Contributions

P.K.S., D.P.L. and D.D.S. set up and optimized the experiment. P.K.S. and D.P.L. measured the experimental data. P.K.S. and D.D.S. analysed the data and independently simulated the results in discussion with P.E.B. P.K.S., D.P.L. and M.J.M. prepared the sample for the experiment. P.E.B. was responsible for experimental infrastructure. P.K.S., D.D.S. and P.E.B. wrote the manuscript with input from and discussion with the co-authors. P.E.B. supervised the overall project and its direction. All the authors critically read the manuscript and approved it.

Corresponding author

Correspondence to Paul E. Barclay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks Lilian Childress and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental setup.

a) Image of the inside of the sample chamber. b) Widefield optical image of fiber taper coupled microdisk. c) Schematic of the basic setup.

Supplementary information

Supplementary Information

Supplementary information.

Source data

Source Data Fig. 4

All the final experimental data plotted in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandilya, P.K., Lake, D.P., Mitchell, M.J. et al. Optomechanical interface between telecom photons and spin quantum memory. Nat. Phys. 17, 1420–1425 (2021). https://doi.org/10.1038/s41567-021-01364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01364-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing