Skip to main content
Log in

EMS-based mutants are useful for enhancing drought tolerance in spring wheat

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Sustainable wheat production in drought prone areas can be achieved by developing resilient wheat varieties. In the present study, chemical mutagenesis was used to induce mutations in a cultivated wheat variety ‘NN-Gandum-1’. In total, 44 mutants were selected based on their high yield potential for exposing to well-watered (W 1) and rainfed (W 2) conditions for one season. Then, 24 mutants were selected and were exposed to W 1 and W 2 regimes. On the basis of least relative reduction in physiological parameters under W 2 regime, five mutants were selected for conducting exome capturing assays. In total, 184 SNPs were identified in nine genes (ABC transporter type 1, aspartic peptidase, cytochrome P450, transmembrane domain, heavy metal-associated domain, HMA, NAC domain, NAD (P)-binding domain, S-type anion channel, Ubiquitin-conjugating enzyme E2 and UDP-glucuronosyl/UDP-glucosyltransferase). Maximum number of mutations were observed in chr.2D, which contained mutations in three genes, i.e. ABC transporter type 1, NAD (P)-binding domain and UDP-glucuronosyl/UDP-glucosyltransferase which may have a role in conferring drought tolerance. The selected mutants were further tested for studying their biochemical responses under both the regimes for 2 years. The extent of membrane damage was estimated through malondialdehyde and hydrogen per oxidase, and tolerance to drought stress was assessed via antioxidant enzymes in leaves. The selected mutants under drought stress increased the accumulation of proline content, total soluble sugars, total free amino acids, while decreased total chlorophyll content, carotenoids and total soluble protein. These mutants can further be explored to understand the genetic circuits of drought tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abhinandan K, Skori L, Stanic M, Hickerson N, Jamshed M, Samuel MA (2018) Abiotic stress signaling in wheat–an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00734

    Article  PubMed  PubMed Central  Google Scholar 

  • Abid M, Ali S, Qi LK, Zahoor R, Tian Z, Jiang D, Snider JL, Dai T (2018) Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 8(1):1–15

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Brini F, Masmoudi K (2014) Biotechnology for drought and salinity tolerance of crops. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, pp 97–113

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45(9):1259–1266

    Article  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    Article  CAS  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2014) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39(1):1–6

    Article  Google Scholar 

  • Chance B, Maehly AC (1995) Assay of catalase and pemxides. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Conway G (1998) The doubly green revolution: food for all in the twenty-first century. Cornell University Press, New York

    Google Scholar 

  • Devi R, Kaur N, Gupta AK (2012) Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). NOPR IJBB 49(4):257–265

    CAS  Google Scholar 

  • Dong C, Dalton-Morgan J, Vincent K, Sharp P (2009) A modified TILLING method for wheat breeding. Plant Genome 2(1):39–47

    Article  CAS  Google Scholar 

  • Dorostkar S, Dadkhodaie A, Heidari B (2015) Evaluation of grain yield indices in hexaploid wheat genotypes in response to drought stress. Arch Agron Soil Sci 61(3):397–413

    Article  CAS  Google Scholar 

  • Dubey D, Pandey A (2011) Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. Int J Sci Nat 2(2):395–401

    CAS  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1998) Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30(5):680–689

    Article  Google Scholar 

  • Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29(5):897–912

    Article  Google Scholar 

  • Flexas J, Barón M, Bota J, Ducruet JM, Gallé A et al (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri× V. rupestris). J Exp Bot 60(8):2361–77

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1997) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  Google Scholar 

  • Haque M, Chowdhury SM (2020) Trend of irrigation water requirement in Halda river basin of Bangladesh. J Sci Technol Environ Inform 10(01):673–684

    Article  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758–1776

    Article  CAS  PubMed  Google Scholar 

  • He L, Gao Z (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol 8(22):6151–6157

    Article  CAS  Google Scholar 

  • Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV et al (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26(4):1382–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges E, Xuan Z, Balija V, Kramer M, Molla MN et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Rahman M (2019) Registration of PGMB-15–30 spring wheat. J Plant Regist. https://doi.org/10.3198/jpr2018.03.0015crg

    Article  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27(2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Iqbal MA, Till BJ, Rahman MU (2018) Identification of induced mutations in hexaploid wheat genome using exome capture assay. PLOS ONE 13(8):e0201918

    Article  PubMed  PubMed Central  Google Scholar 

  • Inc S (2001) The SPSS TwoStep Cluster component. A scalable component enabling more efficient customer segmentation. Technical report. SPSS, Chicago, IL

  • Jia M, Guan J, Zhai Z, Geng S, Zhang X, Mao L, Li A (2018) Wheat functional genomics in the era of next generation sequencing: an update. Crop J 6(1):7–14

    Article  Google Scholar 

  • Kaur M, Gupta AK, Zhawar VK (2014) Antioxidant response and Lea genes expression under exogenous ABA and water deficit stress in wheat cultivars contrasting in drought tolerance. J Plant Biochem Biotechnol 23(1):18–30

    Article  CAS  Google Scholar 

  • Khakwani AA, Dennett MD, Munir M, Abid M (2012) Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development. Pak J Bot 44(3):879–886

    Google Scholar 

  • Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao ZQ (2019) Development of drought-tolerant transgenic wheat: achievements and limitations. Int J Mol Sci 20(13):3350

    Article  CAS  PubMed Central  Google Scholar 

  • Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F et al (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci 114(6):E913–E921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, An G, Gao X (2016) Morpho-physiological responses of Alhagi sparsifolia Shap. (leguminosae) seedlings to progressive drought stress. Pak J Bot 48(2):429–438

    Google Scholar 

  • Liu N, Lin Z, Guan L, Gaughan G, Lin G (2014) Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis. PloS One 9(2):e87588

    Article  PubMed  PubMed Central  Google Scholar 

  • Mailloux RJ (2018) Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid Med Cell Longev. https://doi.org/10.1155/2018/7857251

    Article  PubMed  PubMed Central  Google Scholar 

  • Manuchehri R, Salehi H (2014) Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. S Afr J Bot 92:83–88

    Article  CAS  Google Scholar 

  • Marček T, Hamow KÁ, Végh B, Janda T, Darko E (2019) Metabolic response to drought in six winter wheat genotypes. PloS One 14(2):e0212411

    Article  PubMed  PubMed Central  Google Scholar 

  • Mba C, Afza R, Bado S, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. Plant Cell Cult Essent Methods 20:111–130

    Article  Google Scholar 

  • Mendanha T, Rosenqvist E, Nordentoft Hyldgaard B, Doonan JH, Ottosen CO (2020) Drought priming effects on alleviating the photosynthetic limitations of wheat cultivars (Triticum aestivum L.) with contrasting tolerance to abiotic stresses. J Agro Crop Sci. https://doi.org/10.1111/jac.12404

    Article  Google Scholar 

  • Mishra S, Jha A, Dubey R (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Howell T, Vasquez-Gross H, De Haro LA, Dubcovsky J, Pearce S (2018) Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 293(2):463–477

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R (2016) Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica 211(1):71–89

    Article  CAS  Google Scholar 

  • Mohammed A, Kadhem F (2017) Screening drought tolerance in bread wheat genotypes (Triticum aestivum L.) using drought indices and multivariate analysis. Iraqi J Agric Sci 48:41

    Google Scholar 

  • Nadia K, Naqvi FN (2010) Effect of water stress on lipid peroxidation and antioxidant enzymes in local bread wheat hexaploids. J Food Agric Environ 8(2):521–526

    Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. In: Seminars in Cell & Developmental Biology, vol 80. Elsevier pp 3–12

  • Noreen S, Ashraf M, Hussain M, Jamil A (2009) Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak J Bot 41(1):473–9

    CAS  Google Scholar 

  • Noya I, González-García S, Bacenetti J, Fiala M, Moreira MT (2018) Environmental impacts of the cultivation-phase associated with agricultural crops for feed production. J Clean Prod 172:3721–3733

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Zhu L, He L, Chen D, Zeng D et al (2019) DNA damage and reactive oxygen species cause cell death in the rice local lesions 1 mutant under high light and high temperature. New Phytol 222(1):349–365

    Article  CAS  PubMed  Google Scholar 

  • Rawat N, Sehgal SK, Joshi A, Rothe N, Wilson DL, McGraw N, Vadlani PV, Li W, Gill BS (2012) A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol 12(1):205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Ren R, Li Z, Zhang L, Zhou H, Jiang X, Liu Y (2020) Enzymatic and nonenzymatic antioxidant systems impact the viability of cryopreserved Paeonia suffruticosa pollen. Plant Cell Tissue Organ Cult (PCTOC) 144(1):233–246

    Article  Google Scholar 

  • Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Rivière N, Eversole K (2018) High throughput SNP discovery and genotyping in hexaploid wheat. PloS One 13(1):e0186329

    Article  PubMed  PubMed Central  Google Scholar 

  • Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12(9):R88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam A, Alqudah AM, Dawood MF, Baenziger PS, Börner A (2019) Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci 20(13):3137

    Article  CAS  PubMed Central  Google Scholar 

  • Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15(10):662–676

    Article  CAS  PubMed  Google Scholar 

  • Senapati N, Semenov MA (2020) Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob Food Secur 24:100340

    Article  Google Scholar 

  • Senapati N, Stratonovitch P, Paul MJ, Semenov MA (2019) Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J Exp Bot 70(9):2549–2560

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Zheng B (2019) Melatonin mediated regulation of drought stress: physiological and molecular aspects. Plants 8(7):190

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U (2010) Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem 48(2–3):200–206

    Article  CAS  PubMed  Google Scholar 

  • Sreekanth TV, Nagajyothi PC, Lee KD, Prasad TN (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10(5):1129–1140

    Article  CAS  Google Scholar 

  • Strukul G (2013) Catalytic oxidations with hydrogen peroxide as oxidant. Springer Science & Business Media, New York

    Google Scholar 

  • Tabarzad A, Ayoubi B, Riasat M, Saed-Moucheshi A, Pessarakli M (2017) Perusing biochemical antioxidant enzymes as selection criteria under drought stress in wheat varieties. J Plant Nutr 40(17):2413–2420

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang X, Du T, Huang J, Peng S, Xiong D (2018) Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J Exp Bot 69(16):4033–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Zhong Y, Shangguan Z (2016) A meta-analysis of leaf gas exchange and water status responses to drought. Sci Rep 6:20917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33(1):1–7

    CAS  Google Scholar 

  • Zhao W, Liu L, Shen Q et al (2020) Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 12(8):2127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funds for developing wheat mutant were provided by the International Atomic Energy Commission (IAEA), Vienna, Austria through a project entitled “Developing Germplasm through TILLING in Crop Plants Using Mutation and Genomic Approaches (PAK/5/047).” Special appreciations are extending to Dr Cristobal Uauy, Project Leader Crop Genetics, John Innes Centre, Norwich Research Park, UK for providing laboratory facility for undertaking exome capture assay and analysis. I am also extremely grateful to Pakistan Agriculture Research Council (PARC) for providing funds to take this project to logical end through a project entitled “Characterization of mutants derived from EMS-derived Gandum-1 for rust and drought tolerance for sustaining wheat yield in Pakistan” (CS 049) under ALP scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tayyaba Shaheen or Mehboob-ur-Rahman.

Additional information

Communicated by J. Zimny.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, S., Hussain, M., Zulfiqar, S. et al. EMS-based mutants are useful for enhancing drought tolerance in spring wheat. CEREAL RESEARCH COMMUNICATIONS 50, 767–778 (2022). https://doi.org/10.1007/s42976-021-00220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00220-7

Keywords

Navigation