Skip to main content
Log in

Poincaré’s works leading to the Poincaré conjecture

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

In the last decade, the Poincaré conjecture has probably been the most famous statement among all the contributions of Poincaré to the mathematics community. There have been many papers and books that describe various attempts and the final works of Perelman leading to a positive solution to the conjecture, but the evolution of Poincaré’s works leading to this conjecture has not been carefully discussed or described, and some other historical aspects about it have not been addressed either. For example, one question is how it fits into the overall work of Poincaré in topology, and what are some other related questions that he had raised. Since Poincaré did not state the Poincaré conjecture as a conjecture but rather raised it as a question, one natural question is why he did this. In order to address these issues, in this paper, we examine Poincaré’s works in topology in the framework of classifying manifolds through numerical and algebraic invariants. Consequently, we also provide a full history of the formulation of the Poincaré conjecture which is richer than what is usually described and accepted and hence gain a better understanding of overall works of Poincaré in topology. In addition, this analysis clarifies a puzzling question on the relation between Poincaré’s stated motivations for topology and the Poincaré conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Some summaries and analysis of Poincaré’s work in topology, including the other three supplements, have been carried out in, for example, Dieudonné (1989, Chap 1), Sarkaria (1999; 1994), Novikov (2004), the translator’s introduction to Poincaré (2010), Volkert (1996), Gray (2013, Chap 8), Verhulst (2012, Chap. 10), de Saint-Gervais (2014). Our discussion is complementary to them in some sense.

  2. See Poincaré (1892, 633; 2010, 1). In this paper, we will use the English translation of these Poincaré’s papers in Poincaré (2010).

  3. See Poincaré (1892, 634; 2010, 2).

  4. See Poincaré (1895, §13, 50; 2010, §13, 41).

  5. See Poincaré (1895, 55; 2010, 44).

  6. See Poincaré (1895, 65; 2010, 52).

  7. See Poincaré (1895, 51; 2010, §13, 41).

  8. See Poincaré (1895, 66; 2010, 53).

  9. See Poincaré (1895, 51; 2010, 41).

  10. See Poincaré (1895, 66; 2010, 53).

  11. See Poincaré (1895, 65; 2010, 52).

  12. See Poincaré (1892, 635–636; 2010, 2–3).

  13. See Poincaré (1895, §14, 66; 2010, 53).

  14. See Poincaré (1900, 308; 2010, 134).

  15. See Poincaré (1900, 307; 2010, 133).

  16. See Poincaré (1904, 45; 2010, 179).

  17. See Poincaré (1904, 46; 2010, 179).

  18. See Poincaré (1904, 62; 2010, 190).

  19. See Poincaré (1904, 110; 2010, 224).

  20. See Poincaré (1895, 51; 2010, 41).

  21. See Poincaré (1895, 6; 2010, 9).

  22. This omission of the claim in Poincaré (1900, 308) about a characterization of the sphere makes one wonder whether Poincaré had already became suspicious of his statement, given that he published a counter-example to the claim a few years later in Poincaré (1904) as explained earlier.

  23. It should be emphasized that the original reason for writing this paper was entirely to understand better the history of the Poincaré conjecture. This answer to the question posed in Ji and Wang (2020, 393–394) was an accidental, or unexpected, outcome.

  24. See Poincaré (1895, 2; 2010, 6).

  25. A detailed explanation of these stated motivations and applications for topology by Poincaré was given in Ji and Wang (2020). This was also the main purpose of that paper.

  26. Jeremy Gray commented that though Pont’s statement is true, no one had the classification of compact orientable surfaces before Riemann. The problem is that Riemann’s definitions and ideas were far from rigorous.

  27. Segal wrote (Segal 1999, 849): “it was von Dyck’s work which inspired Poincaré to what we today call the Euler–Poincaré characteristic.”

  28. The influence of Dyck on Poincaré was also asserted by Dieudonné (1989, 17): “Poincaré starting point was the same as those of his predecessors (he quoted Riemann, Betti, and von Dyck)”, and by Pont (1974, 153): “Located at the boundary of the period we are studying, Dyck’s contributions act as a center. If, in fact, it is possible to see them as the culmination of a long chain of work, one can also identify one of the sources of the current of ideas which leads to Poincaré’s research and to modern topology.”

  29. See Klein (1882; 1963, 24).

  30. Furthermore, the Poincaré index theorem is more than the general topological thinking. It is a very special case of the Poincaré–Hopf index theorem in differential topology which relates the indices of the singularities of a nonzero vector field on a closed manifold of any dimension to the Euler characteristic number of the manifold. The general Poincaré–Hopf index theorem for vector fields on compact manifolds of higher dimensions was proved by Hopf in Hopf (1927).

  31. See Poincaré (1895, 18; 2010, 18). This approach is an early form of the later de Rham cohomology groups of manifolds.

  32. See Hadamard (1897, 1898); Barrow-Green (1997).

  33. Some basic references on Thurston’s geometrization program include: (1) Thurston (1982), which contains the original statements by Thurston on this program, (2) Scott (1983), which contains a fairly detailed description of the eight geometries involved in the program, and (3) McMullen (2011), which gives an accessible and historical account of the geometrization program, in particular a one line summary: “Thus a principal corollary of the geometrization conjecture is that most 3-manifolds are hyperbolic” on page 262.

    One can see from Thurston (1982, 361) and McMullen (2011, 266) that some of the most striking results of Thurston are that certain manifolds, for example, Haken manifolds, are hyperbolic. Thurston’s geometrization program is the first one on a list of 24 problems proposed by Thurston (1982, 379–380). The last ones on the list that were solved assert that certain manifolds are virtually Haken and hence virtually hyperbolic, and hyperbolic manifolds virtually have the positive first Betti number (Agol 2014). We also note that the Seifert manifolds mentioned in Sect. 4 play an important role in Thurston’s geometrization program.

  34. See also the first section of Johnson (1981).

References

  • Agol, I. 2014. Virtual properties of 3-manifolds. In Proceedings of the international congress of mathematicians-Seoul, vol. 1, 141–170. Seoul: Kyung Moon Sa.

  • Aleksandrov, P.S. 1956. Combinatorial topology, vol. 1, xvi++225. Rochester, N. Y.: Graylock Press.

    Google Scholar 

  • Alexander, J.W. 1914/15. Normal forms for one- and two-sided surfaces. The Annals of Mathematics 16 (1–4): 158–161.

  • Alexander, J.W. 1915. A proof of the invariance of certain constants of analysis situs. Transactions of the American Mathematical Society 16 (2): 148–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, J.W. 1919. Note on two three-dimensional manifolds with the same group. Transactions of the American Mathematical Society 20 (4): 339–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexandroff, P., and H. Hopf. 1935. Topologie. Ban I. Grundbegriffe der mengentheoretischen Topologie, Topologie der Komplexe, topologische Invarianzsätze und anschliessende Begriffsbildungen. Verschlingungen im\(n\)-dimensionalen euklidischen Raum, stetige abbildungen von Polyedern. Reprint of the 1935 first edition, vol. I, ii+637. Bronx, N. Y.: Chelsea Publishing Co.

  • Appell, P. 2013. Henri poincaré. Paris: Ellipses.

    MATH  Google Scholar 

  • Aschenbrenner, M., S. Friedl, and H. Wilton. 2015. 3-Manifold groups, xiv+215. EMS series of lectures in mathematics. Zürich: European Mathematical Society (EMS).

    Book  MATH  Google Scholar 

  • Baker, H.F. 1915. Jules henri poincaré. Philosophical Transactions of the Royal Society of London, Series A, XCI vi–xvi: 1854–1912 (Obituary Notices of Fellows deceased).

  • Barrow-Green, J. 1997. Poincaré and the three body problem, vol. 11, xvi+272. History of mathematics. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Bessiéres, L., G. Besson, and M. Boileau. 2010. The proof of the Poincaré conjecture, according to Perelman. In The scientific legacy of Poincaré, vol. 36, 243–255. History of mathematics. Providence: American Mathematical Society.

  • Bottazzini, U., and J. Gray. 2013. Hidden harmony-geometric fantasies. The rise of complex function theory, xviii+848. Sources and studies in the history of mathematics and physical sciences. New York: Springer.

    Book  MATH  Google Scholar 

  • Chandler, B., and W. Magnus. 1982. The history of combinatorial group theory. A case study in the history of ideas, vol. 9, viii+234. Studies in the history of mathematics and physical sciences. New York: Springer.

    Book  MATH  Google Scholar 

  • Charpentier, É., É. Ghys, and A. Lesne. 2010. The scientific legacy of Poincaré, vol. 36, xiv+392. Translated from the 2006 French original by Joshua Bowman. History of Mathematics. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Collins, D.J., and H. Zieschang. 1993. Combinatorial group theory and fundamental groups. In Algebra II, vol. 58. Encyclopaedia of Mathematical Sciences, 1–166, 233–240. Berlin: Springer.

  • Darboux, G. 1913. Éloge historique d’Henri Poincaré, Lu dans séance publique annuelle du 15 Décembre, Included in the second volume of Poincaré’s collected works, vii–lxxi pp.

  • de Pierre Boutroux, M. 1921. Lettre de M. Pierre Boutroux á M. Mittag-Leffler. Acta Mathematica 38 (1): 197–201.

  • de Saint-Gervais, H.P. 2014–2019. Analysis situs: topologie algébrique des variétés. An electronic book available at http://analysis-situs.math.cnrs.fr/.

  • de Saint-Gervais, H.P. 2016. Uniformization of Riemann surfaces. Revisiting a hundred-year-old theorem. Translated from the 2010 French by Robert G. Burns. Heritage of European Mathematics. European Mathematical Society (EMS), Zurich. xxx+482 pp.

  • Dehn, M. 1910. Über die topologie des dreidimensionalen Raumes. Mathematische Annalen 69: 137–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Dehn, M. 1911. Über unendliche diskontinuierliche Gruppen. Mathematische Annalen 71: 116–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Dehn, M., and P. Heegaard. 1907. Analysis situs. Enzyklopädie der Mathematischen Wissenschaften, vol. III AB3, 153–220. Leipzig: Teubner.

    MATH  Google Scholar 

  • Dieudonné, J. 1989. A history of algebraic and differential topology. 1900–1960, xxii+648. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Donaldson, S. 1999. One hundred years of manifold topology. In History of topology, 435–447. Amsterdam: North-Holland.

  • Drutu, C., and M. Kapovich. 2018. Geometric group theory, vol. 63, xx+819. With an appendix by Bogdan Nica. American Mathematical Society colloquium publications. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Dyck, W. 1884. On the “analysis situs” of 3-dimensional spaces. Report of the British Association for the Advancement of Science, p. 648.

  • Dyck, W. 1888. Beiträge zur analysis situs. Mathematische Annalen 32 (4): 457–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Dyck, W. 1890. Beiträge zur analysis situs. Mathematische Annalen 37 (2): 273–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Fréchet, M., and Fan, K. 1967. Initiation to combinatorial topology. Translated from the French, with some notes, by Howard W. Eves Prindle. xii+124 pp. Boston, Mass.-London-Sydney: Weber & Schmidt, Inc.

  • Gordon, C. 1999. 3-dimensional topology up to 1960. In History of topology, 449–489. Amsterdam: North-Holland.

  • Gray, J. 1994. On the history of the Riemann mapping theorem. Rendiconti del Circolo Matematico di Palermo 2 (Suppl. 34): 47–94.

    MathSciNet  MATH  Google Scholar 

  • Gray, J. 2013. Henri Poincaré. A scientific biography, xvi+592. Princeton: Princeton University Press.

  • Hadamard, J. 1897. Sur certaines propriétés des trajectoires en dynamique. Journal de Mathématiques 3 (5): 331–387.

    MATH  Google Scholar 

  • Hadamard, J. 1898. Les surfaces á courbures opposées et leurs lignes géodesiques. Journal de Mathématiques 4 (5): 27–73.

    MATH  Google Scholar 

  • Hadamard, J. 1921. L’oeuvre mathématique de Poincaré. Acta Mathematica 38 (1): 203–287.

  • Hadamard, J. 1922. The early scientific work of Henri Poincaré. Rice University studies ; v. 9, no. 3. Rice institute pamphlets. Houston, 23 cm. vol. IX(3): 111–183.

  • Hadamard, J. 1933. The later scientific work of Henri Poincaré. Rice University studies; v. 20, no. 1. The Rice institute pamphlet. [Houston, Tex., 1933] 24 cm. vol. XX, no. 1, January, p. 1–86. illus.

  • Hopf, H. 1927. Vektorfelder in \(n\)-dimensionalen Mannigfaltigkeiten. Mathematische Annalen 96 (1): 225–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Hurwitz, A. 1898. Über die Entwickelung der allgemeinen Theorie der analytischen Funktionen in neuer Zeit. In Verhandlungen des ersten internationalen Mathematiker-Kongresses in Zürich, vol. 9(11), ed. F. Rudio, 91–112. Leipzig: Teubner.

    Google Scholar 

  • James, I. 2002. Remarkable mathematicians. From Euler to von Neumann, xiv+433. MAA Spectrum. Washington, DC: Mathematical Association of America. Cambridge: Cambridge University Press.

  • Ji, L., and C. Wang. 2020. Poincaré’s stated motivations for topology. Archive for History of Exact Sciences 74 (4): 381–400.

  • Johnson, D. 1981. The problem of the invariance of dimension in the growth of modern topology. II. Archive for History of Exact Sciences 25 (2–3): 85–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, C. 1866. Sur la déformation des surfaces. Journal de Mathématiques Pures et Appliquées, 2e Série 11: 105–109.

  • Klein, F. 1882. Ueber Riemann’s theorie der algebraischen functionen und ihrer integrale. Eine ergänzung der gewöhnlichen darstellungen, Druck und Verlag von B.G. Teubner: Leipzig. An English translation appeared in On Riemann’s theory of algebraic functions and their integrals. A supplement to the usual treatises. Translated from the German by Frances Hardcastle Dover Publications, Inc., New York, xii+76 pp.

  • Kuperberg, G. 2019. Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization. Pacific Journal of Mathematics 301 (1): 189–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Lebesgue, H. 1958. Notices d’histoire des mathematiques. Geneva: L’Enseignement Mathematique.

  • Lebon, E. 1912. Henri Poincaré, biographie, bibliographie analytique écrits. Paris: Gauthier-Villars.

    MATH  Google Scholar 

  • Lefschetz, S. 1930. Topology, vol. 12. AMS Colloquium Publications. American Mathematical Society.

  • Listing, J.B. 1847. Vorstudien zur topologie, pp. 811–875. Göttingen

  • Listing, J.B. 1862. Der Census räumlicher Complexe oder Verallegemeinerung des Euler’schen Satzes von den Polyedern, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, t. 10, pp. 97–180. Göttingen.

  • Lyndon, R., and Schupp, P. 2001. Combinatorial group theory, xiv+339. Reprint of the 1977 edition. Classics in Mathematics. Berlin: Springer-Verlag.

  • Markov, A. 1964. The insolubility of the problem of homeomorphy. In Proceedings of the international congress of mathematicians, pp. 300–306.

  • Matveev, S. 2003. Algorithmic topology and classification of 3-manifolds, vol. 9, xii+478. Algorithms and computation in mathematics. Berlin: Springer.

    MATH  Google Scholar 

  • Mawhin, J. 2005. Henri Poincaré. A life in the service of science. Notices of the American Mathematical Society 52 (9): 1036–1044.

    MathSciNet  MATH  Google Scholar 

  • McMullen, C. 2011. The evolution of geometric structures on 3-manifolds. Bulletin of the American Mathematical Society (New Series) 48 (2): 259–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J. 2003. Towards the Poincaré conjecture and the classification of 3-manifolds. Notices of the American Mathematical Society 50 (10): 1226–1233.

    MathSciNet  MATH  Google Scholar 

  • Milnor, J. 2006. The millennium prize problems, 71–83. The Poincaré conjecture. Cambridge: Clay Mathematics Insttitute.

    MATH  Google Scholar 

  • Möbius, A.F. 1861. Zur theorie der polyëder und der elementarverwandtschaft. Oeuvres Complètes, Tome 2: 519–559.

    Google Scholar 

  • Möbius, A.F. 1863. Theorie der elementarem verwandtschaft. Berichte überdie Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-physikalische Klasse 15: 19–57.

    Google Scholar 

  • Moore, G. 2007. The evolution of the concept of homeomorphism. Historia Mathematica 34 (3): 333–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Morgan, J. 2007a. The Poincaré conjecture. In International congress of mathematicians, Vol. I, 713–736. Zürich: Eur. Math. Soc.

  • Morgan, J. 2007b. The Work of Grigory Perelman. In Notices of the AMS, 393–399.

  • Novikov, S. 2004. Henri Poincaré and XXth century topology. In Solvay workshops and symposia, vol. 2, Symposium Henri Poincaré, edited by P. Gaspard, M. Henneaux, and F. Lambert, pp. 17–24.

  • O’Shea, D. 2007. The Poincaré conjecture. In search of the shape of the universe, x+293. New York: Walker & Company.

  • Picard, E., and G. Simart. 1971. Théorie des fonctions algébriques de deux variables indépendantes. Tome I, II. Réimpression corrigée (en un volume) de l’édition en deux volumes de 1897 et 1906. Chelsea Publishing Co., Bronx, N.Y. Tome I: xiv+244 pp.; Tome II: ii+52 pp.

  • Poincaré, H. 1880. Sur les courbes définies par une équation différentielle. Comptes Rendus 90: 673–675.

    MATH  Google Scholar 

  • Poincaré, H. 1881a. Mémoire sur les courbes définies par une équation différentielle. Journal de Mathematiques 7 (3): 375–422.

    MATH  Google Scholar 

  • Poincaré, H. 1881b. Sur les courbes définies par une équation différentielle. Comptes Rendus 93: 951–952.

    MATH  Google Scholar 

  • Poincaré, H. 1882. Mémoire sur les courbes définies par une équation différentielle. Journal de Mathematiques 8 (3): 251–296.

    MATH  Google Scholar 

  • Poincaré, H. 1885. Sur les courbes définies par une équation différentielle. Journal de Mathematiques 1 (4): 167–244.

    MATH  Google Scholar 

  • Poincaré, H. 1886a. Sur les courbes définies par une équation différentielle. Journal de Mathematiques 2 (4): 151–217.

    MATH  Google Scholar 

  • Poincaré, H. 1886b. Sur les résidus des intégrals doubles. Comptes Rendus Academie des Sciences 102: 202–204.

    MATH  Google Scholar 

  • Poincaré, H. 1887. Sur les résidus des intégrals doubles. Acta Mathematica 9: 321–380.

    Article  MathSciNet  MATH  Google Scholar 

  • Poincaré, H. 1890. Sur le probléme des trois corps et les équations de la dynamique, Acta 13: 1–270. An English translation is available in The three-body problem and the equations of dynamics. Poincaré’s foundational work on dynamical systems theory. Translated from the 1890 French original and with a preface by Bruce D. Popp. Astrophysics and Space Science Library, 443. Springer, Cham, 2017. xxii+248 pp.

  • Poincaré, H. 1892. Sur l’Aanalysis situs. Comptes Rendus de l’Academie des Sciences 115: 633–636.

  • Poincaré, H. 1893. Sur la généralisation d’un théorème d’Euler relatif aux polyèdres. Comptes Rendus de l’Academie des Sciences 117: 144–145.

  • Poincaré, H. 1895. Analysis situs. Journal de l’École Polytechnique, Series 21: 1–123.

  • Poincaré, H. 1899a. Sur les nombres de Betti. Comptes Rendus de l’Academie des Sciences 128: 629–630.

  • Poincaré, H. 1899b. Complément à l’analysis situs. Rendiconti del Circolo Matematico di Palermo, t. 13: 285–343.

  • Poincaré, H. 1900. Second complément à l’analysis situs. Proceedings of the London Mathematical Society 32: 277–308.

  • Poincaré, H. 1901a. Sur “Analysis situs.” Comptes Rendus de l’Academie des Sciences 133: 707–709.

  • Poincaré, H. 1901b. Sur la connexion des surfaces algébriques. Comptes Rendus de l’Academie des Sciences 133: 969–973.

  • Poincaré, H. 1902a. Sur certaines surfaces algébriques. Troisième complément à l’Analysis situs. Bulletin de la Soociete Mathematique de France 30: 49–70.

  • Poincaré, H. 1902b. Sur les cycles des surfaces algébriques: quatrième complément à l’Analysis Situs. Journal de Mathématiques Pures et Appliquées 8 (5): 169–214.

  • Poincaré, H. 1904. Cinquiéme complément à l’analysis situs. Rendiconti del Circolo matematico di Palermo 18: 45–110.

  • Poincaré, H. 1905. Sur les lignes géodésiques des surfaces convexes. Transactions of the American Mathematical Society 6: 237–274.

    MathSciNet  MATH  Google Scholar 

  • Poincaré, H. 1910. Sur les courbes tracées sur les surfaces algébriques. Annales Scientifiques de École Normale Supérieure 27 (3): 55–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Poincaré, H. 1912. Sur un théorème de géométrie. Rendicotti Matematico di Palermo 33 (33): 375–407.

    Article  MATH  Google Scholar 

  • Poincaré, H. 1913. Mathematics and science: Last essays. Translated from the French by John W. Bolduc Dover Publications, Inc., New York 1963 iv+121 pp. (A translation of the first edition of Dernières pensées, published by Ernest Flammarion, Paris.)

  • Poincaré, H. 1921. Analyse des travaux scientifiques de Poincaré faite par lui-m\({\hat{e}}\)me. Acta Mathematica 38: 1–135.

    MathSciNet  Google Scholar 

  • Poincaré, H. 1985. Papers on Fuchsian functions, ii+483. Translated from the French and with an introduction by John Stillwell. New York: Springer.

  • Poincaré, H. 2010. Papers on topology. Analysis situs and its five supplements. Translated and with an introduction by John Stillwell. History of Mathematics, 37. American Mathematical Society, Providence, RI; London Mathematical Society, London. xx+228 pp.

  • Pont, J.C. 1974. La topologie algébrique des origines á Poincaré, x+197. Paris: Presses Universitaires de France.

    MATH  Google Scholar 

  • Reidemeister, K. 1935. Homotopieringe und Linsenräume. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 11: 102–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkaria, K.S. 1994. Poincaré’s paper on topology, unpublished Notes of Lectures given in 1993–1994. http://www.kssarkaria.org/docs/Sarkaria-Analysis-Situs.pdf

  • Sarkaria, K. S. 1999. The topological work of Henri Poincaré. History of topology, 123–167, North-Holland, Amsterdam.

  • Schoenflies, A. 1900. Über einen Satz der Analysis Situs. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physicalische Klasse, 282–290.

  • Schoenflies, A. 1908. Die Entwickelung der Lehre von den Punktmannigfaltigkeiten. Leipzig: Teubner.

    MATH  Google Scholar 

  • Scott, P. 1983. The geometries of 3-manifolds. Bulletin of the London Mathematical Society 15 (5): 401–487.

    Article  MathSciNet  MATH  Google Scholar 

  • Segal, S.L. 1999. Topologists in Hitler’s Germany. In History of topology, 849–861. Amsterdam: North-Holland.

  • Seifert, H. 1933. Topologie Dreidimensionaler Gefaserter Räume. Acta Mathematica 60 (1): 147–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Seifert, H., and W. Threlfall. 1980. Seifert and Threlfall: a textbook of topology, xvi+437. Translated from the German edition of 1934 by Michael A. Goldman. With a preface by Joan S. Birman. With “Topology of 3-dimensional fibered spaces” by Seifert. Translated from the German by Wolfgang Heil. Pure and Applied Mathematics, 89. New York-London: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers].

  • Smale, S. 1990. The story of the higher-dimensional Poincaré conjecture (what actually happened on the beaches of Rio). The Mathematical Intelligencer 12 (2): 44–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Stillwell, J. 1982. The word problem and the isomorphism problem for groups. Bulletin of the American Mathematical Society (New Series) 6 (1): 33–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Stillwell, J. 2012. Poincaré and the early history of 3-manifolds. Bulletin of the American Mathematical Society (New Series) 49 (4): 555–576.

    Article  MATH  Google Scholar 

  • Thurston, W. 1982. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bulletin of the American Mathematical Society (New Series) 6 (3): 357–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Tietze, H. 1908. Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Mathematical fur Physics 19 (1): 1–118.

    MATH  Google Scholar 

  • Tietze, H., and L. Vietoris. 1930. Beziehungen zwischen den verschiedenen Zweigen der Topologie. In: Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, III AB13, pp. 147–231.

  • Vanden Eynde, R. 1992. Historical evolution of the concept of homotopic paths. Archive for History of Exact Sciences 45 (2): 127–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Veblen, O. 1931. Analysis situs, 2nd ed. Providence: American Mathematics Society.

    MATH  Google Scholar 

  • Veblen, O., and J.W. Alexander. 1912/13. Manifolds of n dimensions. Annals of Mathematics 14 (1–4): 163–178.

  • Verhulst, F. 2012. Henri Poincaré. Impatient genius, xii+260. New York: Springer.

    Book  MATH  Google Scholar 

  • Volkert, K. 1996. The early history of Poincaré’s conjecture. Henri Poincaré: science et philosophie (Nancy, 1994), 241–250, 580, Publ. Henri-Poincaré -Arch., Berlin: Akademie Verlag.

  • Volkert, K. 2014. Poincaré conjecture. Bulletin of the Manifold Atlas.

  • Volterra, V., J. Hadamard, P. Langevin, and P. Boutroux. 1914. Henri Poincaré, L’oeuvre scientifique. Deuxieme Édition, Librairie Félix Alcan: L’oeuvre philosophique.

Download references

Acknowledgements

This paper was substantially modified from one part of the preprint in 2019 titled “Poincaré’s topology and Poincaré Conjecture” which was read and commented by Jeremy Gray. We would like to thank him for his many valuable suggestions and communications on how to understand and write the history of mathematics. An anonymous referee and Jeremy Gray also read an earlier version of the current paper. We would like to thank them for suggesting to understand the history of the Poincaré conjecture in connection with Poincaré’s earlier works related to topology as well and hence to gain a bigger historical perspective. The whole section, §6, was written based on their suggestions and comments. We are also grateful to Jeremy Gray for his many comments and suggestions on how to improve the final version of this paper. We would also like to thank Chanchan Guo and Liyun Pan for their help with the reference (Dehn and Heegaard 1907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Ji.

Additional information

Communicated by Jeremy Gray.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lizhen Ji: Partially supported by a Grant from the Simons Foundation #353785.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Wang, C. Poincaré’s works leading to the Poincaré conjecture. Arch. Hist. Exact Sci. 76, 223–260 (2022). https://doi.org/10.1007/s00407-021-00283-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-021-00283-2

Navigation