Skip to main content
Log in

Correlation in the Near and Far Field of Compressible Jet to Identify Noise Source Characteristics

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A noise source characteristic of an unheated compressible jet is experimentally investigated for the jet with exit Mach number 0.8. Measurements of acoustic pressure fluctuations were performed in the near-field and far-field independently to identify noise source characteristics using the correlation technique. Near-field and far-field acoustic pressure fluctuations were also measured simultaneously to identify the acoustic component in near-field pressure fluctuations measured. Measurements were taken for the base and chevron nozzle with the nozzle exit diameter of 30 mm. From auto-correlation and cross-correlation in the near and far fields, it is observed that region surrounding to mixing layer is dominated by random small scale structures which radiate noise to sideline direction in the far-field. Correlation obtained at downstream of the potential core in the near-field represents the dominance of coherent large scale structure which radiates the noise to the far-field in the aft angle direction. Chevron changes the characteristics of noise sources. The size of the dominant large-scale noise source reduces due to chevron. Coherence of the noise source in the region surrounding to mixing layer reduces due to chevron which is responsible for reducing the energy of the dominant noise sources downstream of the potential core. Near-field far-field cross-correlation confirms that spatial near-field location for radiating acoustic pressure fluctuations more efficiently to the far-field at polar angle 30° is dependent on axial as well as transverse position in the near-field. Chevron reduces the convective velocity of the flow. Chevron also reduces the spatial correlation length scale of the dominant noise source. Chevron changes the acoustic pressure in the near-field thereby shifting the dominant noise source towards the nozzle exit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

\(a_{o}\) :

Sound speed, m/s

D:

Nozzle exit diameter, mm

F:

Frequency, Hz

M :

Mach number = \(\left( {\frac{{ U_{exit} }}{{a_{o} }}} \right)\)

Re :

Reynolds number

SPL :

Sound pressure level, dB = 10 log\(\left( {\frac{{P_{rms} }}{{20 \times 10^{ - 6} }}} \right)^{2}\)

St :

Strouhal number = \(\frac{{\left( {fD} \right)}}{{{\text{U}}_{{{\text{exit}}}} }}\)

Uexit :

Jet exit velocity, m/s

OASPL:

Overall sound pressure level, dB

\(P_{rms}\) :

Root mean square pressure of fluctuating pressure \(\dot{P}\) recorded by microphone

\(P_{m} \left( t \right)\) :

Pressure fluctuation measured by mth microphone at time, \(t\)

\(P_{n} \left( {t + \tau } \right)\) :

Pressure fluctuation measured by nth microphone at time\(,\left( { t + \tau } \right)\)

\(R_{mn} \left( \tau \right)\) :

Cross correlation function

x, y, z:

Coordinate along jet axis in axial and transverse direction

θ :

Polar angle

ϕ :

Azimuthal angle

References

  • Ahmad, A.: Experimental aeroacoustics study on jet noise reduction using tangential air injection. Ph.D. Thesis, University of London (2011)

  • Ahuja, K.K., Bushell, K.W.: An experimental study of subsonic jet noise and comparison with theory. J. Sound Vib. 30(3), 317–341 (1973)

    Article  Google Scholar 

  • Alkislar, M.B., Krothapalli, A., Butler, G.W.: The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139 (2007)

    Article  Google Scholar 

  • Arakeri, V.H., Krithapalli, A., Siddavaram, V., Alkislar, M.B., Lurenco, L.M.: On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 75–98 (2003)

    Article  Google Scholar 

  • Arndt, R.E.A., Long, D.F., Glauser, M.N.: The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 1–33 (1997)

    Article  Google Scholar 

  • Ben Freund, J., Heinz, S.: Compressibility effects in a turbulent annular mixing layer. J. Fluid Mech. 438, 277–305 (1998)

    Article  Google Scholar 

  • Bridges, J., Brown, C.: Parametric testing of chevrons on single flow hot jets. In: AIAA-Paper-2004-2824 (2004)

  • Brown, C., Bridges, J.: Acoustic efficiency of azimuthal modes in jet noise using chevron nozzles. In: 12th AIAA/CEAS Aeroacoustics Conference, AIAA-Paper-2006-2654 (2006)

  • Callender, B., Gutmark, E.J., Martens, S.: Far-field acoustic investigation into chevron nozzle mechanisms and trends. AIAA J. 43(1), 87–95 (2005)

    Article  Google Scholar 

  • Callender, B., Gutmark, E., Martens, S.: Near-field investigation of chevron nozzle mechanisms. AIAA J. 46(1), 36–45 (2008)

    Article  Google Scholar 

  • Crawley, M., Alkandry, H., Sinha, A., Samimy M.: Correlation of irrotational near-field pressure and far-field acoustic in forced high-speed jets. In: AIAA-Paper-2013-2188 (2013)

  • Grizzi, S., Camussi, R.: Experimental investigation of the near-field noise generated by a compressible round jet. J. Phys. Conf. Ser. 318(9), 092003 (2011)

    Article  Google Scholar 

  • Grizzi, S., Camussi, R.: Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet. J. Fluid Mech. 698, 93–124 (2012)

    Article  Google Scholar 

  • Hall, J.W., Hall, A.M., Pinier, J.T., Glauser, M.N.: Cross-spectral analysis of the pressure in a Mach 0.85 turbulent jet. AIAA J. 47(1), 54–59 (2009)

    Article  Google Scholar 

  • Hileman, J., Samimy, M.: Effects of vortex generating tabs on noise sources in an ideally expanded mach 1.3 jet. Int. J. Aeroacoustics 2(1), 35–63 (2003)

    Article  Google Scholar 

  • Kerechanin, C.W., Samimy, M., Kim, J.-H.: Effects of nozzle trailing edges on acoustic field of supersonic rectangular jet. AIAA J. 39(6), 1065–1070 (2001)

    Article  Google Scholar 

  • Kiwata, T., Kimura, S., Komatsu, N., Murata, H., Kim, Y.H.: Flow characteristics of a plane jet with an extended lip-plate and serrated tabs. J. Fluid Sci. Technol. 4(2), 268–278 (2009)

    Article  Google Scholar 

  • Kreitzman, J., Nichols, J.W.: Acoustic source analysis of a supersonic rectangular chevron jet. In: 21st AIAA/CEAS Aeroacoustics Conf., AIAA-Paper-2015-2838 (2015)

  • Laurendeau, E., Jordan, P., Delville, J., Bonnet, J.: Source-mechanism identification by nearfield-farfield pressure correlations in subsonic jets. Int. J. Aeroacoust. 7(1), 41–68 (2008)

    Article  Google Scholar 

  • Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. London, Ser. A 211(1107), 564–587 (1952)

    Article  MathSciNet  Google Scholar 

  • Lighthill, M.J.: On sound generated aerodynamically II. Turbulence as a source of sound. Proc. R. Soc. London, Ser. A 222(1148), 1–32 (1954)

    Article  MathSciNet  Google Scholar 

  • Lush, P.A.: Measurements of subsonic jet noise and comparison with theory. J. Fluid Mech. 46(03), 477–500 (1971)

    Article  Google Scholar 

  • Maestrello, L., Fung, Y.-T.: Quasi-periodic structure of a turbulent jet. J. Sound Vib. 64(1), 107–122 (1979)

    Article  Google Scholar 

  • McColgan, C.J., Larson, R.S.: Mean velocity , turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel. NASA Contractor report 2949 (1978)

  • Michalke, A., Fuchs, H.V.: On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech. 70(01), 179–205 (1975)

    Article  Google Scholar 

  • Mohan, N.K.D., Dowling, A.P., Karabasov, S.A., Xia, H., Graham, O., Hynes, T.Y., Tucker, P.G.: Acoustic sources and far-field noise of chevron and round jets. AIAA J. 53(9), 2421–2436 (2015)

    Article  Google Scholar 

  • Nance, D., Ahuja, K.: Experimentally separating jet noise contribution of large-scale turbulence from that of small-scale turbulence. In: 2006, AIAA-Paper-2009–3213 (2009)

  • Narayanan, S., Barber, T.J., Polak, D.R.: High subsonic jet experiments: turbulence and noise generation studies. AIAA J. 40(3), 430–437 (2002)

    Article  Google Scholar 

  • Nikam, S.R., Sharma, S.D.: Effect of chevron nozzle penetration on aero-acoustic characteristics of jet at M=0.8. Fluid Dyn. Res. 49, 065506 (2017)

    Article  Google Scholar 

  • Nikam, S.R., Sharma, S.D.: Effect of a chevron nozzle on noise radiation from a compressible jet. AIAA J. 56(11), 4361–4378 (2018)

    Article  Google Scholar 

  • Panickar, P., Sharma, S., Sarpotdar, S., Raman, G., Butler, W.: New vortex generator design for nozzle internal modification. Int. J. Aerosp. Innov. 3(4), 249–260 (2011)

    Article  Google Scholar 

  • Pannu, S.S., Johannesen, N.H.: The structure of jets from notched nozzles. J. Fluid Mech. 74(03), 515 (1976)

    Article  Google Scholar 

  • Picard, C., Delville, J.: Pressure velocity coupling in a subsonic round jet. Int. J. Heat Fluid Flow 21(3), 359–364 (2000)

    Article  Google Scholar 

  • Reba, R., Narayanan, S., Colonius, T., Dunlop, M.: A study of the role of organized structures in jet noise generation. In: 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, AIAA-Paper-2003-3314 (2003)

  • Roshko, A.: Structure of turbulent shear flows: a new look. AIAA J. 14(10), 1349–1357 (1976)

    Article  Google Scholar 

  • Saiyed, N.H., Mikkelsen, K.L., Bridges, J.E.: Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA J. 41(3), 372–378 (2003)

    Article  Google Scholar 

  • Samimy, M., Zaman, K.B.M.Q., Reeder, M.F.: Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA J. 31(4), 609–619 (1993)

    Article  Google Scholar 

  • Sharma, S.D., Murugan, K.N. Near field aeroacoustics of a jet from elliptical nozzle at M=0.8. In: 16th AIAA/CEAS Aeroacoustics Conference, AIAA-Paper-2010-3955 (2010)

  • Sharma, S.D., Chatterjee, A., Kanniyam Natarajan M.: The azimuthal variations of near field pressure fluctuations in elliptical jets. In: 20th AIAA/CEAS Aeroacoustics, AIAA-Paper-2014-3309 (2014)

  • Suzuki, T., Colonius, T.: Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197 (2006)

    Article  Google Scholar 

  • Tam, C.K.W.: Jet noise: since 1952. Theor. Comput. Fluid Dyn. 10(1–4), 393–405 (1998)

    Article  Google Scholar 

  • Tam, C., Golebiowski, M., Seiner, J.: On the two components of turbulent mixing noise from supersonic jets. In: AIAA-Paper-1996-1716 (1996)

  • Tam, C.K.W., Viswanathan, K., Ahuja, K.K., Panda, J.: The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253–292 (2008)

    Article  Google Scholar 

  • Tide, P.S., Babu, V.: Numerical predictions of noise due to subsonic jets from nozzles with and without chevrons. Appl. Acoust. 70(2), 321–332 (2009)

    Article  Google Scholar 

  • Tinney, C.E., Jordan, P.: The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175–204 (2008)

    Article  Google Scholar 

  • Ukeiley, L., Ponton, M.: On the near field pressure of a transonic axisymmetric jet. Int. J. Aeroacoust. 3(1), 43–65 (2004)

    Article  Google Scholar 

  • Upadhyay, P., Valentich, G., Kumar, R., Alvi, F.: Flow and acoustic characteristics of non-axisymmetric jets at subsonic conditions. Exp. Fluids 58, 52 (2017)

    Article  Google Scholar 

  • Uzun, A., Hussaini, M.Y.: Noise generation in the near-nozzle region of a chevron nozzle jet flow. in AIAA-Paper-2007–3596.

  • Verma, S.B., Rathakrishnan, E.: An experimental study on the noise characteristics of notched circular-slot jets. J. Sound Vib. 226(2), 383–396 (1999)

    Article  Google Scholar 

  • Viswanathan, K., Underbrink, J.R., Brusniak, L.: Space-time correlation measurements in nearfields of jets. AIAA J. 49(8), 1577–1599 (2011)

    Article  Google Scholar 

  • Xia, H., Tucker, P.G.: Numerical simulation of single-stream jets from a serrated nozzle. Flow Turbul. Combust. 88(1–2), 3–18 (2012)

    Article  Google Scholar 

  • Zaman, K.B.M.Q.: Flow field and near and far sound field of a subsonic jet. J. Sound Vib. 106(1), 1–16 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Ravindra Nikam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikam, S.R., Sharma, S. Correlation in the Near and Far Field of Compressible Jet to Identify Noise Source Characteristics. Flow Turbulence Combust 108, 739–773 (2022). https://doi.org/10.1007/s10494-021-00299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00299-2

Keywords

Navigation