Skip to main content
Log in

Structural and Dielectric Properties of (1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2 − 0.8) nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

(1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2–0.8) [ALTBZFO] nanocomposites were synthesized via hydrothermal method. These nanocomposites are significantly adequate for perfect absorber and high charge stowed capacitor applications. The hydrothermal method is mainly a solution reaction involved methodology to control the morphology of the materials, significantly can control the compositions of nanomaterials through multiphase chemical reactions. The X-ray diffraction patterns indicated the phase transformation from tetragonal for x = 0.2 to cubic for x = 0.4–0.8 samples, respectively. The surface morphology showed the existence of nanospheres-like structures. At 1 MHz frequency also, the dielectric constant was increased from 230 to 710 for x = 0.2–0.6 samples, respectively. Interestingly, x = 0.6 nanocomposite exhibited the negative dielectric behavior having the dielectric constant (ε′) ~ − 58.5 and dielectric loss (ε") ~ − 417 at 8 MHz. Similarly, x = 0.6 sample showed ac-electrical conductivity (σac) − 0.159 S/cm at 6 MHz. Hence, these kinds of materials can provide high charge stored capacitors and perfect absorber applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data will be made immediately available based on the request.

References

  1. K. Ramam, M. Lopez, K. Chandramouli, Dielectric and piezoelectric studies of perovskite–tungsten bronze structured (1–x)PLZT–xPBBiN nanoceramic composites by high-energy mechanical activation technique. J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2009.08.082

    Article  Google Scholar 

  2. A.A. Momin, M.A. Zubair, M.F. Islam, A.K.M. Akther, Enhance magnetoelectric coupling in xLi0.1Ni0.2Mn0.6Fe2.1O4–(1–x) BiFeO3 multiferroic composites. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01665-7

    Article  Google Scholar 

  3. R. Aepuru, V.M. Gaikwad, R. Udayabhaskar et al., Enhanced dielectric properties and relaxation behavior in double perovskite-polymer-based flexible 0–3 nanocomposite films. J. Mater. Sci.: Mater. Electron. 31, 13477–13486 (2020). https://doi.org/10.1007/s10854-020-03902-w

    Article  CAS  Google Scholar 

  4. M.J. Miah, A.K.M.A. Hossain, Magnetic, dielectric and complex impedance properties of xBa0.95Sr0.05TiO3–(1–x) BiFe0.9Gd0.1O3 multiferroic ceramics. Acta. Metall. Sin. (Engl. Lett.) 29, 505–517 (2016)

    Article  CAS  Google Scholar 

  5. S. Dastagiri, M.V. Lakshmaiah, K.C.B. Naidu, Defect dipole polarization mechanism in low-dimensional Europium substituted Al0.8La0.2TiO3 nanostructures. Phys. E: Low-dimens. Syst. Nanostructures (2020). https://doi.org/10.1016/j.physe.2020.114058

    Article  Google Scholar 

  6. B.V.S. Reddy, K. Srinivas, N.S. Kumar, K.C.B. Naidu, S. Ramesh, Nanorods like microstructure, photocatalytic activity, and ac-electrical properties of (1–x) (Al0.2La0.8TiO3) + (x) (BaTiO3) (x = 0.2, 0.4, 0.6 & 0.8) nanocomposites. Chem. Phys. Lett. 752, 137552 (2020). https://doi.org/10.1016/j.cplett.2020.137552

    Article  CAS  Google Scholar 

  7. B.V.S. Reddy, K. Srinivas, N.S. Kumar, K.C.B. Naidu, Phase transformation, nanorods like morphology wide bandgap and dielectric properties of 1-x (Al0.2La0.8TiO3) + x (BaTiO3) (x = 0.2 - 0.8) nanocomposites. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03469-6

    Article  Google Scholar 

  8. S. Dastagiri, M.V. Lakshmaiah, K.C.B. Naidu, N.S. Kumar, A. Khan, Induced dielectric behavior in high dense AlxLa1xTiO3 (x = 0.2–0.8) Nanospheres. J. Mater. Sci.: Mater. Electron. 30, 20253–20264 (2019)

    CAS  Google Scholar 

  9. A. Mallikarjuna, S. Ramesh, N.S. Kumar, K.C.B. Naidu, K.V. Ratnam, H. Manjunatha, B.P. Rao, Structural transformation and high negative dielectric constant behavior in (1–x) (Al0.2La0.8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites. Physica E 122, 114204 (2020)

    Article  CAS  Google Scholar 

  10. A. Mallikarjuna, S. Ramesh, N.S. Kumar, K.C.B. Naidu, K.V. Ratnam, H. Manjunatha, Photocatalytic activity, negative ac- electrical conductivity, dielectric modulus, and impedance properties in 0.6 (Al0.2La0.8TiO3) + 0.4 (BiFeO3) nanocomposite. Cryst. Res. Technol. 55, 1–10 (2020)

    Article  Google Scholar 

  11. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Negative dielectric behavior in tetragonal La0.8Co0.2–xEuxTiO3 (x = 0.01–0.04) nanorods. Mater. Charact. 166, 110425 (2020)

    Article  CAS  Google Scholar 

  12. C. Klingshirn, ZnO: Material, physics and applications. Chem Phys Chem. 8, 782–803 (2007). https://doi.org/10.1002/cphc.200700002

    Article  CAS  PubMed  Google Scholar 

  13. B. Caglar, F. İçer, K.V. Özdokur, S. Caglar, A.O. Özdemir, E.K. Guner, B.M. Beşer, A. Altay, Ç. Çırak, B. Doğan, A. Tabak, A novel amperometric H2O2 biosensor constructed by Cress peroxidase entrapped on BiFeO3 nanoparticles. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124287

    Article  Google Scholar 

  14. A.F. Lima, Optical properties, energy band gap and the charge carriers’ effective masses of the R3c BiFeO3 magnetoelectric compound. J. Phys. Chem. Solids 144, 109484 (2020)

    Article  CAS  Google Scholar 

  15. M.K. Yaakob, N.M.A. Zulkafli, M.F. Kasim, M.H. Mamat, A.A. Mohamad, L. Lu, M.Z. AzhanYahya, Structural phase instability, mixed-phase, and energy band gap change in BiFeO3 under lattice strain effect from first-principles investigation. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.01.118

    Article  Google Scholar 

  16. P. Yuan, D. Li, Wu. Lan, L. Shi, Synthesis and growth mechanism of monodispersed BiFeO3 nanorods with controllable aspect ratio and magnetic/optical properties. Ceram. Int. 46, 1243–1247 (2020)

    Article  CAS  Google Scholar 

  17. F. Sánchez-De Jesús, A.M. Bolarín-Miró, C.A. Cortés-Escobedo, A. Barba-Pingarrón, F. Pedro-García, Enhanced ferromagnetic and electric properties of multiferroic BiFeO3 by doping with Ca. J. Alloys Compd. 824, 153944 (2020)

    Article  Google Scholar 

  18. Rida Ahmed, Ren Jun Si, Sajidur Rehman, Yu. Yi, Qiu Ju Li, Chunchang Wang, High dielectric constant and low-temperature ferroelectric-phase-transition in Ca, Pb co-doped BiFeO3. Results Phys 20, 103623 (2021)

    Article  Google Scholar 

  19. W. Dong, Y. Guo, B. Guo, H. Liu, H. Li, H. Liu, Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode. Mater. Lett. 91, 359–361 (2013)

    Article  CAS  Google Scholar 

  20. Q.-Y. Rong, W.-Z. Xiao, G. Xiao, Hu. Ai-Ming, L.-L. Wang, Magnetic properties in BiFeO3 doped with Cu and Zn first-principles investigation. J. Alloy. Compd. 674, 463–469 (2016)

    Article  CAS  Google Scholar 

  21. S. Yang, F. Zhang, X. Xie, H. Sun, L. Zhang, S. Fan, Enhanced leakage and ferroelectric properties of Zn-doped BiFeO3 thin films grown by sol-gel method. J. Alloy. Compd. 734, 243–249 (2018)

    Article  CAS  Google Scholar 

  22. J. Liu, H. Deng, X. Zhai, T. Lin, X. Meng, Y. Zhang, W. Zhou, P. Yang, J. Chu, Influence of Zn doping on structural, optical and magnetic properties of BiFeO3 films fabricated by the sol–gel technique. Mater. Lett. 133, 49–52 (2014)

    Article  CAS  Google Scholar 

  23. C.M. Raghavan, J.W. Kim, S.S. Kim, Effects of (Dy, Zn) co-doping on structural and electrical properties of BiFeO3 thin films. Ceram. Int. 40, 2281–2286 (2014)

    Article  CAS  Google Scholar 

  24. R.K. Singh, J. Shah, R.K. Kotnala, Magnetic and dielectric properties of rare earth substituted Ni0.5Zn0.5Fe1.95R0.05O4 (R=Pr, Sm and La) ferrite nanoparticles. Mater. Sci. Eng.: B (2016). https://doi.org/10.1016/j.mseb.2016.03.011

    Article  Google Scholar 

  25. P. Uniyal, K.L. Yadav, Synthesis and study of multiferroic properties of ZnFe2O4–BiFeO3 nanocomposites. J. Alloys Compd. 492, 406–410 (2010)

    Article  CAS  Google Scholar 

  26. Yong X. Gan, Ahalapitiya H. Jayatissa, Yu. Zhen, Xi. Chen, Mingheng Li, Hydrothermal synthesis of nanomaterials. J. Nanomater. (2020). https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  27. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  28. P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften Gottingen. Math.-Phys. Kl. 2, 98–100 (1918)

    Google Scholar 

  29. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, G.R. Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2-zLazTiO3 (z=0.05–0.2) nanoparticles. Ceram. Int. 44, 19408–19420 (2018)

    Article  CAS  Google Scholar 

  30. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y= 0.2–0.8) nanoparticles: Structural Morphological and Dielectric Properties. Ceram. Int. 44, 18189–18199 (2018)

    Article  CAS  Google Scholar 

  31. T. Anil Babu, K.V. Ramesh, V. Raghavendra Reddy, D.L. Sastry, Structural and dielectric studies of excessive Bi3+ containing perovskite PZT and pyrochlore biphasic ceramics. Mater. Sci. Eng.: B 228, 175–182 (2018). https://doi.org/10.1016/j.mseb.2017.11.023

    Article  CAS  Google Scholar 

  32. X. Li, L. Jiang, C. Zhou et al., Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater 7, e165 (2015). https://doi.org/10.1038/am.2015.11

    Article  CAS  Google Scholar 

  33. J. Pütz, S. Heusing, M.A. Aegerter, Characterization of Electrical Properties, in Handbook of Sol-Gel Science and Technology. ed. by L. Klein, M. Aparicio, A. Jitianu (Springer, Cham, 2016)

    Google Scholar 

  34. K.W. Wagner, The Distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  35. D.B. Basha, An improved dielectric behavior of hydrothermally synthesized Ba0.4La0.6−yEuyTiO3 (y = 0.01–0.04) nanorods. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05297-8

    Article  Google Scholar 

  36. D. Baba Basha, Hydrothermal synthesis of Ba1−xLaxTiO3 (x = 0.2, 0.4, 0.6, & 0.8) nanorods: structure, morphology, optical band gap, and dielectricity behavior. J. Mater. Sci.: Mater. Electron. 31, 16448–16458 (2020). https://doi.org/10.1007/s10854-020-04199-5

    Article  CAS  Google Scholar 

  37. R.M. De la Cruz, C. Kanyinda-Malu, J.E. Muñoz Santiuste, Dielectric tensor of a rectangular arrangement of Ag nanoparticles in anisotropic LiNbO3: analysis of the negative epsilon conditions. Physica B 581, 411957 (2020)

    Article  Google Scholar 

  38. R.K. Singh, J. Shah, R.K. Kotnala, Magnetic and dielectric properties of rare-earth substituted Ni0.5Zn0.5Fe1.95R0.05O4 (R = Pr, Sm, and La) ferrite nanoparticles. Mater. Sci. Eng.: B 210, 64–69 (2016). https://doi.org/10.1016/j.mseb.2016.03.011

    Article  CAS  Google Scholar 

  39. M.A. Rahman, E. Ahamed, M.R.I. Faruque, M.T. Islam, Preparation of NiAl2O4-based flexible substrates for metamaterials with negative dielectric properties. Sci. Rep. 8, 14948 (2018)

    Article  Google Scholar 

  40. O. Sakai, A. Iwai, Y. Omura, S. Iio, T. Naito, Wave propagation in and around negative-dielectric-constant discharge plasma. Phys. Plasmas 25, 031901 (2018)

    Article  Google Scholar 

  41. B. Li, G. Sui, W.H. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176–4180 (2009)

    Article  CAS  Google Scholar 

  42. A. Manohar, V. Vijayakanth, R. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. 31(1), 799–806 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors express thankfulness to Dr. P. Sreeramulu, Assistant Professor (English), GITAM, Bangalore for providing English language editing services to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ramesh or K. Chandra Babu Naidu.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallikarjuna, A., Kumar, N.S., Babu, T.A. et al. Structural and Dielectric Properties of (1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2 − 0.8) nanocomposites. J Inorg Organomet Polym 31, 4512–4522 (2021). https://doi.org/10.1007/s10904-021-02123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02123-w

Keywords

Navigation