Skip to main content
Log in

Multifunctional heteroatom zeolites: construction and applications

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Multifunctional heteroatom zeolites have drawn broad attentions due to the possible synergistic effects in the catalytic reactions. Remarkable achievements have been made on the synthesis, characterization and catalytic applications of multifunctional heteroatom zeolite, while a review on this important topic is still missing. Herein, current research status of multifunctional heteroatom zeolites is briefly summarized, aiming to boost further researches. First, the synthesis strategies toward heteroatom zeolites are introduced, including the direct synthesis and postsynthesis routes; then, the spectroscopic techniques to identify the existing states of heteroatom sites and the corresponding physiochemical properties are shown and compared; finally, the catalytic applications of multifunctional heteroatom zeolites in various chemical reactions, especially in one-step tandem reactions, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent, 4410501, 1983-10-18

  2. Wroblewska A, Wajzberg J, Fajdek A, Milchert E. Epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst under autogenic pressure. Journal of Hazardous Materials, 2009, 163(2–3): 1303–1309

    Article  CAS  PubMed  Google Scholar 

  3. Gounder R, Davis M E. Titanium-Beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5-C1 hydride shift. ACS Catalysis, 2013, 3(7): 1469–1476

    Article  CAS  Google Scholar 

  4. Song H, Wang J, Wang Z, Song H, Li F, Jin Z. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst. Journal of Catalysis, 2014, 311: 257–265

    Article  CAS  Google Scholar 

  5. Igarashi N, Hashimoto K, Tatsumi T. Catalytical studies on trimethylsilylated Ti-MCM-41 and Ti-MCM-48 materials. Microporous and Mesoporous Materials, 2007, 104(1–3): 269–280

    Article  CAS  Google Scholar 

  6. Song S, Zhao W, Wang L, Chu J, Qu J, Li S, Wang L, Qi T. One-step synthesis of Ti-MSU and its catalytic performance on phenol hydroxylation. Journal of Colloid and Interface Science, 2011, 354(2): 686–690

    Article  CAS  PubMed  Google Scholar 

  7. Deimund M A, Harrison L, Lunn J D, Liu Y, Malek A, Shayib R, Davis M E. Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction. ACS Catalysis, 2015, 6(2): 542–550

    Article  Google Scholar 

  8. Jones A J, Carr R T, Zones S I, Iglesia E. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 2014, 312: 58–68

    Article  CAS  Google Scholar 

  9. Petkov P S, Aleksandrov H A, Valtchev V, Vayssilov G N. Framework stability of heteroatom-substituted forms of extralarge-pore Ge-silicate molecular sieves: the case of ITQ-44. Chemistry of Materials, 2012, 24(13): 2509–2518

    Article  CAS  Google Scholar 

  10. Su X, Wang G, Bai X, Wu W, Xiao L, Fang Y, Zhang J. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, 2016, 293: 365–375

    Article  CAS  Google Scholar 

  11. Luo H Y, Bui L, Gunther W R, Min E, Román-Leshkov Y. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer-Villiger oxidation of cyclic ketones. ACS Catalysis, 2012, 2(12): 2695–2699

    Article  CAS  Google Scholar 

  12. Sun Z, Yan Y, Li G, Zhang Y, Tang Y. Microwave influence on different M-O bonds during MFI-type heteroatom (M) zeolite preparation. Industrial & Engineering Chemistry Research, 2017, 56(39): 11167–11174

    Article  CAS  Google Scholar 

  13. Li X, Li B, Mao H, Shah A T. Synthesis of mesoporous zeolite Ni-MFI with high nickel contents by using the ionic complex [(C4H9)4N]2+[Ni(EDTA)]2− as a template. Journal of Colloid and Interface Science, 2009, 332(2): 444–450

    Article  CAS  PubMed  Google Scholar 

  14. Meng L, Zhu X, Mezari B, Pestman R, Wannapakdee W, Hensen E J M. On the role of acidity in bulk and nanosheet [T]MFI (T = Al3+, Ga3+, Fe3+, B3+) zeolites in the methanol-to-hydrocarbons reaction. ChemCatChem, 2017, 9(20): 3942–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bregante D T, Tan J Z, Sutrisno A, Flaherty D W. Heteroatom substituted zeolite FAU with ultralow Al contents for liquid-phase oxidation catalysis. Catalysis Science & Technology, 2020, 10(3): 635–647

    Article  CAS  Google Scholar 

  16. Yan T, Yang L, Dai W, Wu G, Guan N, Hunger M, Li L. Cascade conversion of acetic acid to isobutene over yttrium-modified siliceous Beta zeolites. ACS Catalysis, 2019, 9(11): 9726–9738

    Article  CAS  Google Scholar 

  17. Wu Y, Wang J, Liu P, Zhang W, Gu J, Wang X. Framework-substituted lanthanide MCM-22 zeolite: synthesis and characterization. Journal of the American Chemical Society, 2010, 132(51): 17989–17991

    Article  CAS  PubMed  Google Scholar 

  18. Reddy J K, Mantri K, Lad S, Das J, Raman G, Jasra R. Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream. Journal of Porous Materials, 2020, 27(6): 1649–1658

    Article  CAS  Google Scholar 

  19. Fickel D W, D’Addio E, Lauterbach J A, Lobo R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 2011, 102(3–4): 441–448

    Article  CAS  Google Scholar 

  20. Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279(2): 257–268

    Article  CAS  Google Scholar 

  21. Luo P, Guan Y, Xu H, He M, Wu P. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions. Frontiers of Chemical Science and Engineering, 2020, 14(2): 258–266

    Article  CAS  Google Scholar 

  22. Reiprich B, Weissenberger T, Schwieger W, Inayat A. Layer-like FAU-type zeolites: a comparative view on different preparation routes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 127–142

    Article  CAS  Google Scholar 

  23. Pang T, Yang X, Yuan C, Elzatahry A A, Alghamdi A, He X, Cheng X, Deng Y. Recent advance in synthesis and application of heteroatom zeolites. Chinese Chemical Letters, 2021, 32(1): 328–338

    Article  CAS  Google Scholar 

  24. Meng B, Ren S, Li Z, Duan H, Gao X, Zhang H, Song W, Guo Q, Shen B. Intra-crystalline mesoporous zeolite [Al,Zr]-Y for catalytic cracking. ACS Applied Nano Materials, 2020, 3(9): 9293–9302

    Article  CAS  Google Scholar 

  25. Bai Y, Wei L, Yang M, Chen H, Holdren S, Zhu G, Tran D T, Yao C, Sun R, Pan Y, Liu D. Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(17): 7693–7705

    Article  CAS  Google Scholar 

  26. Schwartz T J, Goodman S M, Osmundsen C M, Taarning E, Mozuch M D, Gaskell J, Cullen D, Kersten P J, Dumesic J A. Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catalysis, 2013, 3(12): 2689–2693

    Article  CAS  Google Scholar 

  27. Antunes M M, Lima S, Neves P, Magalhães A L, Fazio E, Neri F, Pereira M T, Silva A F, Silva C M, Rocha S M, et al. Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr, Al-containing ordered micro/mesoporous silicates. Applied Catalysis B: Environmental, 2016, 182: 485–503

    Article  CAS  Google Scholar 

  28. Jin Y, Asaoka S, Zhang S, Li P, Zhao S. Reexamination on transition-metal substituted MFI zeolites for catalytic conversion of methanol into light olefins. Fuel Processing Technology, 2013, 115: 34–41

    Article  CAS  Google Scholar 

  29. Grand J, Talapaneni S N, Vicente A, Fernandez C, Dib E, Aleksandrov H A, Vayssilov G N, Retoux R, Boullay P, Gilson J P, et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 2017, 16(10): 1010–1015

    Article  CAS  PubMed  Google Scholar 

  30. Talapaneni S N, Grand J, Thomas S, Ahmad H A, Mintova S. Nanosized Sn-MFI zeolite for selective detection of exhaust gases. Materials & Design, 2016, 99: 574–580

    Article  CAS  Google Scholar 

  31. Liu D, Zhang B, Liu X, Li J. Cyclohexane oxidation over AFI molecular sieves: effects of Cr, Co incorporation and crystal size. Catalysis Science & Technology, 2015, 5(6): 3394–3402

    Article  CAS  Google Scholar 

  32. Zhou L, Xu J, Miao H, Li X, Wang F. Synthesis of FeCoMnAPO-5 molecular sieve and catalytic activity in cyclohexane oxidation by oxygen. Catalysis Letters, 2005, 99(3–4): 231–234

    Article  CAS  Google Scholar 

  33. Lv G, Deng S, Yi Z, Zhang X, Wang F, Li H, Zhu Y. One-pot synthesis of framework W-doped TS-1 zeolite with robust Lewis acidity for effective oxidative desulfurization. Chemical Communications, 2019, 55(33): 4885–4888

    Article  CAS  PubMed  Google Scholar 

  34. Choudhary V R, Kinage A K, Choudhary T V. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science, 1997, 275(5304): 1286–1288

    Article  CAS  PubMed  Google Scholar 

  35. Dijkmans J, Dusselier M, Gabriëls D, Houthoofd K, Magusin P C M M, Huang S, Pontikes Y, Trekels M, Vantomme A, Giebeler L, et al. Cooperative catalysis for multistep biomass conversion with Sn/Al Beta zeolite. ACS Catalysis, 2015, 5(2): 928–940

    Article  CAS  Google Scholar 

  36. Li L, Ding J, Jiang J G, Zhu Z, Wu P. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts. Chinese Journal of Catalysis, 2015, 36(6): 820–828

    Article  CAS  Google Scholar 

  37. Li G, Gao L, Sheng Z, Zhan Y, Zhang C, Ju J, Zhang Y, Tang Y. A Zr-Al-Beta zeolite with open Zr(IV) sites: an efficient bifunctional Lewis-Brønsted acid catalyst for a cascade reaction. Catalysis Science & Technology, 2019, 9(15): 4055–4065

    Article  CAS  Google Scholar 

  38. Yang X, Lv B, Lu T, Su Y, Zhou L. Promotion effect of Mg on a post-synthesized Sn-Beta zeolite for the conversion of glucose to methyl lactate. Catalysis Science & Technology, 2020, 10(3): 700–709

    Article  CAS  Google Scholar 

  39. Antunes M M, Lima S, Neves P, Magalhães A L, Fazio E, Fernandes A, Neri F, Silva C M, Rocha S M, Ribeiro M F, et al. One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of Catalysis, 2015, 329: 522–537

    Article  CAS  Google Scholar 

  40. Winoto H P, Ahn B S, Jae J. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: optimizing the catalyst acid properties and process conditions. Journal of Industrial and Engineering Chemistry, 2016, 40: 62–71

    Article  CAS  Google Scholar 

  41. Padovan D, Al-Nayili A, Hammond C. Bifunctional Lewis and Brønsted acidic zeolites permit the continuous production of bio-renewable furanic ethers. Green Chemistry, 2017, 19(12): 2846–2854

    Article  CAS  Google Scholar 

  42. Yang X, Yang J, Gao B, Lu T, Zhou L. Conversion of glucose to methyl levulinate over Sn-Al-β zeolite: role of Sn and mesoporosity. Catalysis Communications, 2019, 130: 105783

    Article  Google Scholar 

  43. Iglesias J, Moreno J, Morales G, Melero J A, Juárez P, López-Granados M, Mariscal R, Martínez-Salazar I. Sn-Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange. Green Chemistry, 2019, 21(21): 5876–5885

    Article  CAS  Google Scholar 

  44. Hu W, Chi Z, Wan Y, Wang S, Lin J, Wan S, Wang Y. Synergetic effect of Lewis acid and base in modified Sn-β on the direct conversion of levoglucosan to lactic acid. Catalysis Science & Technology, 2020, 10(9): 2986–2993

    Article  CAS  Google Scholar 

  45. Xia M, Dong W, Shen Z, Xiao S, Chen W, Gu M, Zhang Y. Efficient production of lactic acid from biomass-derived carbohydrates under synergistic effects of indium and tin in In-Sn-Beta zeolites. Sustainable Energy & Fuels, 2020, 4(10): 5327–5338

    Article  CAS  Google Scholar 

  46. Dong W, Shen Z, Peng B, Gu M, Zhou X, Xiang B, Zhang Y. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta lewis acid-base catalyst. Scientific Reports, 2016, 6(1): 26713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hernández B, Iglesias J, Morales G, Paniagua M, López-Aguado C, García Fierro J L, Wolf P, Hermans I, Melero J A. One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional Brønsted-Lewis Zr-Al-beta zeolite. Green Chemistry, 2016, 18(21): 5777–5781

    Article  Google Scholar 

  48. Antunes M M, Neves P, Fernandes A, Lima S, Silva A F, Ribeiro M F, Silva C M, Pillinger M, Valente A A. Bulk and composite catalysts combining BEA topology and mesoporosity for the valorisation of furfural. Catalysis Science & Technology, 2016, 6(21): 7812–7829

    Article  CAS  Google Scholar 

  49. Kyriienko P I, Larina O V, Soloviev S O, Orlyk S M, Calers C, Dzwigaj S. Ethanol conversion into 1,3-butadiene by the lebedev method over MTaSiBEA zeolites (M= Ag, Cu, Zn). ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2075–2083

    Article  CAS  Google Scholar 

  50. Sushkevich V L, Ivanova I I. Ag-promoted ZrBEA zeolites obtained by post-synthetic modification for conversion of ethanol to butadiene. ChemSusChem, 2016, 9(16): 2216–2225

    Article  CAS  PubMed  Google Scholar 

  51. Wang C, Zheng M, Li X, Li X, Zhang T. Catalytic conversion of ethanol into butadiene over high performance LiZnHf-MFI zeolite nanosheets. Green Chemistry, 2019, 21(5): 1006–1010

    Article  CAS  Google Scholar 

  52. Wang Y, Hu Z P, Tian W, Gao L, Wang Z, Yuan Z Y. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science & Technology, 2019, 9(24): 6993–7002

    Article  CAS  Google Scholar 

  53. Xu Z, Yue Y, Bao X, Xie Z, Zhu H. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catalysis, 2019, 10(1): 818–828

    Article  Google Scholar 

  54. Li J, Li J, Zhao Z, Fan X, Liu J, Wei Y, Duan A, Xie Z, Liu Q. Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. Journal of Catalysis, 2017, 352: 361–370

    Article  CAS  Google Scholar 

  55. Liu J, Fang S, Jian R, Wu F, Jian P. Silylated Pd/Ti-MCM-41 catalyst for the selective production of propylene oxide from the oxidation of propylene with cumene hydroperoxide. Powder Technology, 2018, 329: 19–24

    Article  CAS  Google Scholar 

  56. Lei Q, Wang C, Dai W, Wu G, Guan N, Hunger M, Li L. Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite. Chinese Journal of Catalysis, 2021, 42(7): 1176–1184

    Article  CAS  Google Scholar 

  57. Shen Q, Li L, Hao Z, Xu Z P. Highly active and stable bimetallic Ir/Fe-USY catalysts for direct and NO-assisted N2O decomposition. Applied Catalysis B: Environmental, 2008, 84(3–4): 734–741

    CAS  Google Scholar 

  58. Zhou X, Chen H, Zhang G, Wang J, Xie Z, Hua Z, Zhang L, Shi J. Cu/Mn co-loaded hierarchically porous zeolite beta: a highly efficient synergetic catalyst for soot oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9745–9753

    Article  CAS  Google Scholar 

  59. Baranowski C J, Roger M, Bahmanpour A M, Krocher O. Nature of synergy between Brønsted and Lewis acid sites in Sn-Beta zeolites for polyoxymethylene dimethyl ethers synthesis. Chem-SusChem, 2019, 12(19): 4421–4431

    CAS  Google Scholar 

  60. Chae H J, Park S S, Shin Y H, Park M B. Synthesis and characterization of nanocrystalline TiAPSO-34 catalysts and their performance in the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 2018, 259: 60–66

    Article  CAS  Google Scholar 

  61. Wróblewska A. Water as the solvent for the process of phenol hydroxylation over the Ti-MWW catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2012, 108(2): 491–505

    Article  Google Scholar 

  62. Wang B, Peng X, Yang J, Lin M, Zhu B, Zhang Y, Xia C, Liao W, Shu X. Nano-crystalline, hierarchical zeolite Ti-Beta: hydrothermal synthesis and catalytic performance in alkenes epoxidation reactions. Microporous and Mesoporous Materials, 2019, 278: 30–34

    Article  CAS  Google Scholar 

  63. Li J, Corma A, Yu J. Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44(20): 7112–7127

    Article  CAS  PubMed  Google Scholar 

  64. Moliner M, Rey F, Corma A. Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angewandte Chemie International Edition, 2013, 52(52): 13880–13889

    Article  CAS  PubMed  Google Scholar 

  65. Moliner M, Corma A. Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous and Mesoporous Materials, 2014, 189: 31–40

    Article  CAS  Google Scholar 

  66. Corma A, Domine M E, Nemeth L, Valencia S. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society, 2002, 124(13): 3194–3195

    Article  CAS  PubMed  Google Scholar 

  67. Corma A, Nemeth L T, Renz M, Valencia S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature, 2001, 412(6845): 423–425

    Article  CAS  PubMed  Google Scholar 

  68. Corma A, Llabrés i Xamena F X, Prestipino C, Renz M, Valencia S. Water resistant, catalytically active Nb and Ta isolated lewis acid sites, homogeneously distributed by direct synthesis in a Beta zeolite. Journal of Physical Chemistry C, 2009, 113(26): 11306–11315

    Article  CAS  Google Scholar 

  69. Corma A. Water-resistant solid lewis acid catalysts: Meerwein-Ponndorf-Verley and oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 2003, 215(2): 294–304

    Article  CAS  Google Scholar 

  70. Dapsens P Y, Mondelli C, Perez-Ramirez J. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chemical Society Reviews, 2015, 44(20): 7025–7043

    Article  CAS  PubMed  Google Scholar 

  71. Niphadkar P S, Kotwal M S, Deshpande S S, Bokade V V, Joshi P N. Tin-silicalite-1: synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction. Materials Chemistry and Physics, 2009, 114(1): 344–349

    Article  CAS  Google Scholar 

  72. Kang Z, Zhang X, Liu H, Qiu J, Yeung K L. A rapid synthesis route for Sn-Beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer-Villiger oxidation. Chemical Engineering Journal, 2013, 218: 425–432

    Article  CAS  Google Scholar 

  73. Li P, Liu G, Wu H, Liu Y, Jiang J G, Wu P. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite. Journal of Physical Chemistry C, 2011, 115(9): 3663–3670

    Article  CAS  Google Scholar 

  74. Jin J, Ye X, Li Y, Wang Y, Li L, Gu J, Zhao W, Shi J. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances. Dalton Transactions (Cambridge, England), 2014, 43(22): 8196–8204

    Article  CAS  Google Scholar 

  75. Dzwigaj S, Nogier J P, Che M, Saito M, Hosokawa T, Thouverez E, Matsuoka M, Anpo M. Influence of the Ti content on the photocatalytic oxidation of 2-propanol and CO on TiSiBEA zeolites. Catalysis Communications, 2012, 19: 17–20

    Article  CAS  Google Scholar 

  76. Dijkmans J, Gabriëls D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels B F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chemistry, 2013, 15(10): 2777–2785

    Article  CAS  Google Scholar 

  77. Tielens F, Shishido T, Dzwigaj S. What do tantalum framework sites look like in zeolites? A combined theoretical and experimental investigation. Journal of Physical Chemistry C, 2010, 114(21): 9923–9930

    Article  CAS  Google Scholar 

  78. Nogier J P, Millot Y, Man P P, Shishido T, Che M, Dzwigaj S. Probing the incorporation of Ti(IV) into the BEA zeolite framework by XRD, FTIR, NMR, and DR UV. Journal of Physical Chemistry C, 2009, 113(12): 4885–4889

    Article  CAS  Google Scholar 

  79. Dzwigaj S, Millot Y, Méthivier C, Che M. Incorporation of Nb(V) into BEA zeolite investigated by XRD, NMR, IR, DR UV-vis, and XPS. Microporous and Mesoporous Materials, 2010, 130(1–3): 162–166

    Article  CAS  Google Scholar 

  80. Janas J, Gurgul J, Socha R P, Shishido T, Che M, Dzwigaj S. Selective catalytic reduction of NO by ethanol: speciation of iron and “structure-properties” relationship in FeSiBEA zeolite. Applied Catalysis B: Environmental, 2009, 91(1–2): 113–122

    Article  CAS  Google Scholar 

  81. Dzwigaj S, Che M. Toward redox framework single site zeolite catalysts. Catalysis Today, 2011, 169(1): 232–241

    Article  CAS  Google Scholar 

  82. Tang B, Dai W, Sun X, Wu G, Li L, Guan N, Hunger M. Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application. Chinese Journal of Catalysis, 2015, 36(6): 801–805

    Article  CAS  Google Scholar 

  83. Tang B, Dai W, Wu G, Guan N, Li L, Hunger M. Improved postsynthesis strategy to Sn-Beta zeolites as lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catalysis, 2014, 4(8): 2801–2810

    Article  CAS  Google Scholar 

  84. Tang B, Dai W, Sun X, Wu G, Guan N, Hunger M, Li L. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chemistry, 2015, 17(3): 1744–1755

    Article  CAS  Google Scholar 

  85. Ding J, Xu L, Yu Y, Wu H, Huang S, Yang Y, Wu J, Wu P. Clean synthesis of acetaldehyde oxime through ammoximation on titanosilicate catalysts. Catalysis Science & Technology, 2013, 3(10): 2587–2595

    Article  CAS  Google Scholar 

  86. Śrębowata A, Baran R, Łomot D, Lisovytskiy D, Onfroy T, Dzwigaj S. Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2014, 147: 208–220

    Article  Google Scholar 

  87. Ren W, Hua Z, Ge T, Zhou X, Chen L, Zhu Y, Shi J. Post-synthesis of hierarchically structured Ti-β zeolites and their epoxidation catalytic performance. Chinese Journal of Catalysis, 2015, 36(6): 906–912

    Article  CAS  Google Scholar 

  88. Dai W, Lei Q, Wu G, Guan N, Hunger M, Li L. Spectroscopic signature of lewis acidic framework and extraframework Sn sites in Beta zeolites. ACS Catalysis, 2020, 10(23): 14135–14146

    Article  CAS  Google Scholar 

  89. Niphadkar P S, Bhange D S, Selvaraj K, Joshi P N. Thermal expansion properties of stannosilicate molecular sieve with MFI type structure. Chemical Physics Letters, 2012, 548: 51–54

    Article  CAS  Google Scholar 

  90. Kore R, Srivastava R, Satpati B. Highly efficient nanocrystalline zirconosilicate catalysts for the aminolysis, alcoholysis, and hydroamination reactions. ACS Catalysis, 2013, 3(12): 2891–2904

    Article  CAS  Google Scholar 

  91. Guo Q, Feng Z, Li G, Fan F, Li C. Finding the “missing components” during the synthesis of TS-1 zeolite by UV resonance Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(6): 2844–2848

    Article  CAS  Google Scholar 

  92. Yan M, Jin F, Ding Y, Wu G, Chen R, Wang L, Yan Y. Synthesis of titanium-incorporated MWW zeolite by sequential deboronation and atom-planting treatment of ERB-1 as an epoxidation catalyst. Industrial & Engineering Chemistry Research, 2019, 58(12): 4764–4773

    Article  CAS  Google Scholar 

  93. Yue Y, Liu H, Yuan P, Yu C, Bao X. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5(1): 9270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tang B, Dai W, Sun X, Guan N, Li L, Hunger M. A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Green Chemistry, 2014, 16(4): 2281–2291

    Article  CAS  Google Scholar 

  95. Chen Y, Wang X, Zhang L. Identifying the elusive framework niobium in NbS-1 zeolite by UV resonance raman spectroscopy. ChemPhysChem, 2017, 18(23): 3325–3328

    Article  CAS  PubMed  Google Scholar 

  96. Ju X, Tian F, Wang Y, Fan F, Feng Z, Li C. A novel synthetic strategy of Fe-ZSM-35 with pure framework Fe species and its formation mechanism. Inorganic Chemistry Frontiers, 2018, 5(8): 2031–2037

    Article  CAS  Google Scholar 

  97. Zhou H, Zhu W, Shi L, Liu H, Liu S, Xu S, Ni Y, Liu Y, Li L, Liu Z. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. Catalysis Science & Technology, 2015, 5(3): 1961–1968

    Article  CAS  Google Scholar 

  98. Xiong G, Cao Y, Guo Z, Jia Q, Tian F, Liu L. The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18(1): 190–196

    Article  CAS  PubMed  Google Scholar 

  99. Jin S, Wang Z, Tao G, Zhang S, Liu W, Fu W, Zhang B, Sun H, Wang Y, Yang W. UV resonance Raman spectroscopic insight into titanium species and structure-performance relationship in boron-free Ti-MWW zeolite. Journal of Catalysis, 2017, 353: 305–314

    Article  CAS  Google Scholar 

  100. Guo Q, Sun K, Feng Z, Li G, Guo M, Fan F, Li C. A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance raman spectroscopy. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(43): 13854–13860

    CAS  Google Scholar 

  101. Fan F, Feng Z, Li C U V. Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Accounts of Chemical Research, 2010, 43(3): 378–387

    Article  CAS  PubMed  Google Scholar 

  102. Zhang S, Jin S, Tao G, Wang Z, Liu W, Chen Y, Luo J, Zhang B, Sun H, Wang Y, Yang W. The evolution of titanium species in boron-containing Ti-MWW zeolite during post-treatment revealed by UV resonance Raman spectroscopy. Microporous and Mesoporous Materials, 2017, 253: 183–190

    Article  CAS  Google Scholar 

  103. Zhao J, Zhang Y, Zhang S, Wang Q, Chen M, Hu T, Meng C. Synthesis and characterization of Mn-silicalite-1 by the hydrothermal conversion of Mn-magadiite under the neutral condition and its catalytic performance on selective oxidation of styrene. Microporous and Mesoporous Materials, 2018, 268: 16–24

    Article  CAS  Google Scholar 

  104. Xia C, Liu Y, Lin M, Peng X, Zhu B, Shu X. Confirmation of the isomorphous substitution by Sn atoms in the framework positions of MFI-typed zeolite. Catalysis Today, 2018, 316: 193–198

    Article  CAS  Google Scholar 

  105. Nakai M, Miyake K, Inoue R, Ono K, Al Jabri H, Hirota Y, Uchida Y, Tanaka S, Miyamoto M, Oumi Y, et al. Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta). Catalysis Science & Technology, 2019, 9(22): 6234–6239

    Article  CAS  Google Scholar 

  106. Simancas R, Nishitoba T, Park S, Kondo J N, Rey F, Gies H, Yokoi T. Versatile phosphorus-structure-directing agent for direct preparation of novel metallosilicate zeolites with IFW-topology. Microporous and Mesoporous Materials, 2021, 317: 111005

    Article  CAS  Google Scholar 

  107. Sushkevich V L, Kots P A, Kolyagin Y G, Yakimov A V, Marikutsa A V, Ivanova I I. Origin of water-induced Brønsted acid sites in Sn-BEA zeolites. Journal of Physical Chemistry C, 2019, 123(9): 5540–5548

    Article  CAS  Google Scholar 

  108. Gunther W R, Michaelis V K, Caporini M A, Griffin R G, Roman-Leshkov Y. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance 119Sn precursors. Journal of the American Chemical Society, 2014, 136(17): 6219–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wolf P, Valla M, Rossini A J, Comas-Vives A, Nunez-Zarur F, Malaman B, Lesage A, Emsley L, Coperet C, Hermans I. NMR signatures of the active sites in Sn-beta zeolite. Angewandte Chemie International Edition, 2014, 53(38): 10179–10183

    Article  CAS  PubMed  Google Scholar 

  110. Qi G, Wang Q, Xu J, Wu Q, Wang C, Zhao X, Meng X, Xiao F, Deng F. Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Communications Chemistry, 2018, 1(1): 22

    Article  Google Scholar 

  111. Senamart N, Buttha S, Pantupho W, Koleva I Z, Loiha S, Aleksandrov H A, Wittayakun J, Vayssilov G N. Characterization and temperature evolution of iron-containing species in HZSM-5 zeolite prepared from different iron sources. Journal of Porous Materials, 2019, 26(4): 1227–1240

    Article  CAS  Google Scholar 

  112. Nemeth L, Moscoso J, Erdman N, Bare S R, Oroskar A, Kelly S D, Corma A, Valencia S, Renz M. Synthesis and characterization of Sn-Beta as a selective oxidation catalyst. Studies in Surface Science and Catalysis, 2004, 154(4): 2626–2631

    Article  Google Scholar 

  113. Gabrienko A A, Arzumanov S S, Toktarev A V, Danilova I G, Prosvirin I P, Kriventsov V V, Zaikovskii V I, Freude D, Stepanov A G. Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite. ACS Catalysis, 2017, 7(3): 1818–1830

    Article  CAS  Google Scholar 

  114. Qin J, Li B S, Yan D P. Synthesis, characterization and catalytic performance of well-ordered crystalline heteroatom mesoporous MCM-41. Crystals, 2017, 7(4): 89–99

    Article  Google Scholar 

  115. Berlier G, Pourny M, Bordiga S, Spoto G, Zecchina A, Lamberti C. Coordination and oxidation changes undergone by iron species in Fe-MCM-22 upon template removal, activation and redox treatments: an in situ IR, EXAFS and XANES study. Journal of Catalysis, 2005, 229(1): 45–54

    Article  CAS  Google Scholar 

  116. Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850

    Article  CAS  PubMed  Google Scholar 

  117. Aponte Y, de Lasa H. The Effect of Zn on offretite zeolite properties. Acidic characterizations and NH3-TPD desorption models. Industrial & Engineering Chemistry Research, 2017, 56(8): 1948–1960

    Article  CAS  Google Scholar 

  118. Srinivas D, Srivastava R, Ratnasamy P. Transesterifications over titanosilicate molecular sieves. Catalysis Today, 2004, 96(3): 127–133

    Article  CAS  Google Scholar 

  119. Sushkevich V L, Ivanova I I, Taarning E. Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green Chemistry, 2015, 17(4): 2552–2559

    Article  CAS  Google Scholar 

  120. Sushkevich V L, Vimont A, Travert A, Ivanova I I. Spectroscopic evidence for open and closed Lewis acid sites in ZrBEA zeolites. Journal of Physical Chemistry C, 2015, 119(31): 17633–17639

    Article  CAS  Google Scholar 

  121. Sushkevich V L, Palagin D, Ivanova I I. With open arms: open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol. ACS Catalysis, 2015, 5(8): 4833–4836

    Article  CAS  Google Scholar 

  122. Zheng A, Deng F, Liu S B. Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules. Annual Reports on NMR Spectroscopy, 2014, 81: 47–108

    Article  CAS  Google Scholar 

  123. Dubray F, Moldovan S, Kouvatas C, Grand J, Aquino C, Barrier N, Gilson J P, Nesterenko N, Minoux D, Mintova S. Direct evidence for single molybdenum atoms incorporated in the framework of MFI zeolite nanocrystals. Journal of the American Chemical Society, 2019, 141(22): 8689–8693

    Article  CAS  PubMed  Google Scholar 

  124. Dyballa M, Rieg C, Dittmann D, Li Z, Buchmeiser M, Plietker B, Hunger M. Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports. Microporous and Mesoporous Materials, 2020, 293: 109778

    Article  CAS  Google Scholar 

  125. Yi X, Ko H H, Deng F, Liu S B, Zheng A. Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nature Protocols, 2020, 15(10): 3527–3555

    Article  CAS  PubMed  Google Scholar 

  126. Zheng A, Liu S B, Deng F. 31P NMR Chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chemical Reviews, 2017, 117(19): 12475–12531

    Article  CAS  PubMed  Google Scholar 

  127. Yuan E, Dai W, Wu G, Guan N, Hunger M, Li L. Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts. Microporous and Mesoporous Materials, 2018, 270: 265–273

    Article  CAS  Google Scholar 

  128. Zhao R, Zhao Z, Li S, Zhang W. Insights into the correlation of aluminum distribution and Brønsted acidity in H-Beta zeolites from solid-state NMR spectroscopy and DFT calculations. Journal of Physical Chemistry Letters, 2017, 8(10): 2323–2327

    Article  CAS  Google Scholar 

  129. Wiper P V, Amelse J, Mafra L. Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules. Journal of Catalysis, 2014, 316: 240–250

    Article  CAS  Google Scholar 

  130. Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels B F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45(3): 584–611

    Article  CAS  PubMed  Google Scholar 

  131. Li X, Yuan X, Xia G, Liang J, Liu C, Wang Z, Yang W. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185

    Article  CAS  Google Scholar 

  132. Melero J A, Morales G, Iglesias J, Paniagua M, López-Aguado C, Wilson K, Osatiashtiani A. Efficient one-pot production of γ-valerolactone from xylose over Zr-Al-Beta zeolite: rational optimization of catalyst synthesis and reaction conditions. Green Chemistry, 2017, 19(21): 5114–5121

    Article  CAS  Google Scholar 

  133. Song S, Di L, Wu G, Dai W, Guan N, Li L. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization. Applied Catalysis B: Environmental, 2017, 205: 393–403

    Article  CAS  Google Scholar 

  134. van der Graaff W N P, Tempelman C H L, Pidko E A, Hensen E J M. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions. Catalysis Science & Technology, 2017, 7(14): 3151–3162

    Article  CAS  Google Scholar 

  135. Diao Z, Cheng L, Guo W, Hou X, Zheng P, Zhou Q. Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation. Frontiers of Chemical Science and Engineering, 2020, 15(3): 643–653

    Article  Google Scholar 

  136. Hou Y, Li X, Sun M, Li C, Su B L, Lei K, Yu S, Wang Z, Hu Z, Chen L, et al. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2020, 15(2): 269–278

    Article  Google Scholar 

  137. Wang D, Sun H, Liu W, Shen Z, Yang W. Hierarchical ZSM-5 zeolite with radial mesopores: preparation, formation mechanism and application for benzene alkylation. Frontiers of Chemical Science and Engineering, 2019, 14(2): 248–257

    Article  Google Scholar 

  138. Zhang J, Wang L, Wang G, Chen F, Zhu J, Wang C, Bian C, Pan S, Xiao F S. Hierarchical Sn-Beta zeolite catalyst for the conversion of sugars to alkyl lactates. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3123–3131

    Article  CAS  Google Scholar 

  139. Makshina E V, Dusselier M, Janssens W, Degreve J, Jacobs P A, Sels B F. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chemical Society Reviews, 2014, 43(22): 7917–7953

    Article  CAS  PubMed  Google Scholar 

  140. Sun J, Wang Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catalysis, 2014, 4(4): 1078–1090

    Article  CAS  Google Scholar 

  141. Kyriienko P I, Larina O V, Soloviev S O, Orlyk S M, Dzwigaj S. High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture. Catalysis Communications, 2016, 77: 123–126

    Article  CAS  Google Scholar 

  142. Lu X, Xu H, Yan J, Zhou W J, Liebens A, Wu P. One-pot synthesis of ethylene glycol by oxidative hydration of ethylene with hydrogen peroxide over titanosilicate catalysts. Journal of Catalysis, 2018, 358: 89–99

    Article  CAS  Google Scholar 

  143. Ruan J, Wu P, Slater B, Terasaki O. Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angewandte Chemie International Edition, 2005, 117(41): 6877–6881

    Article  Google Scholar 

  144. Jiao W, He Y, Li J, Wang J, Tatsumi T, Fan W. Ti-rich TS-1: a highly active catalyst for epoxidation of methallyl chloride to 2-methyl epichlorohydrin. Applied Catalysis A, General, 2015, 491: 78–85

    Article  CAS  Google Scholar 

  145. Ok D Y, Jiang N, Prasetyanto E A, Jin H, Park S E. Epoxidation of cyclic-olefins over carbon template mesoporous TS-1. Microporous and Mesoporous Materials, 2011, 141(1–3): 2–7

    Article  CAS  Google Scholar 

  146. Tekla J, Tarach K A, Olejniczak Z, Girman V, Góra-Marek K. Effective hierarchization of TS-1 and its catalytic performance in cyclohexene epoxidation. Microporous and Mesoporous Materials, 2016, 233: 16–25

    Article  CAS  Google Scholar 

  147. Wang B, Lu L, Ge B, Chen S, Zhu J, Wei D. Hydrophobic and hierarchical modification of TS-1 and application for propylene epoxidation. Journal of Porous Materials, 2018, 26(1): 227–237

    Article  Google Scholar 

  148. Dal Pozzo L, Fornasari G, Monti T. TS-1, catalytic mechanism in cyclohexanone oxime production. Catalysis Communications, 2002, 3(8): 369–375

    Article  CAS  Google Scholar 

  149. Li Z, Chen R, Xing W, Jin W, Xu N. Continuous acetone ammoximation over TS-1 in a tubular membrane reactor. Industrial & Engineering Chemistry Research, 2010, 49(14): 6309–6316

    Article  CAS  Google Scholar 

  150. Xin H, Zhao J, Xu S, Li J, Zhang W, Guo X, Hensen E J M, Yang Q, Li C. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. Journal of Physical Chemistry C, 2010, 114(14): 6553–6559

    Article  CAS  Google Scholar 

  151. Maspero F, Romano U. Oxidation of alcohols with H2O2 catalyzed by titanium silicalite-1. Journal of Catalysis, 1994, 146(2): 476–482

    Article  CAS  Google Scholar 

  152. Schuster W, Niederer J P M, Hoelderich W F. The gas phase oxidative dehydrogenation of propane over TS-1. Applied Catalysis A, General, 2001, 209(1–2): 131–143

    Article  CAS  Google Scholar 

  153. Kong L, Li G, Wang X. Mild oxidation of thiophene over TS-1/H2O2. Catalysis Today, 2004, 93: 341–345

    Article  Google Scholar 

  154. Dapurkar S E, Sakthivel A, Selvam P. Mesoporous VMCM-41: highly efficient and remarkable catalyst for selective oxidation of cyclohexane to cyclohexanol. Journal of Molecular Catalysis A Chemical, 2004, 223(1–2): 241–250

    Article  CAS  Google Scholar 

  155. Fan W, Fan B, Song M, Chen T, Li R, Dou T, Tatsumi T, Weckhuysen B M. Synthesis, characterization and catalysis of (Co, V)-, (Co, Cr)- and (Cr, V)APO-5 molecular sieves. Microporous and Mesoporous Materials, 2006, 94(1–3): 348–357

    Article  CAS  Google Scholar 

  156. Selvam P, Dapurkar S E. Catalytic activity of highly ordered mesoporous VMCM-48. Applied Catalysis A, General, 2004, 276 (1–2): 257–265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Municipal Natural Science Foundation of Tianjin (Grant No. 18JCJQJC47400), the National Natural Science Foundation of China (Grant No. 21773127) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Q., Wang, C., Dai, W. et al. Multifunctional heteroatom zeolites: construction and applications. Front. Chem. Sci. Eng. 15, 1462–1486 (2021). https://doi.org/10.1007/s11705-021-2099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2099-x

Keywords

Navigation