Skip to main content
Log in

Non-thermal Plasma Activated Water for Increasing Germination and Plant Growth of Lactuca sativa L

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Non-thermal plasma is widely considered as an effective technology for applications in agriculture. Particularly, numerous reports studies have highlighted the role of plasma-activated water (PAW) for seeds germination, plant growth, stress tolerance, and antibacterial ability. The present study investigated the effects of PAW on lettuce (Lactuca Sativa L.) seed germination and seedling growth. PAW was achieved by using an atmospheric pressure dielectric barrier discharge in Ar (50%) –N2 (40%)–O2 (10%) gas mixture for treatment time ranging from 5 to 30 mn. The physicochemical properties of PAW (temperature, pH, electrical conductivity, concentrations of nitrate, nitrite, and hydrogen peroxide) were evaluated. Results show that water-activated during moderate time, 10 to 20 mn, contains reactive oxygen and nitrogen species at relevant concentration levels to have active impacts on seed germination and seedling growth. Germination potential significantly increased by about 117%, 56%, and 77% after 15 mn of treatment, for the first 3 days, respectively, compared to control. For long time PAW (25–30 mn), the germination rate is either constant or decreases. Positive effects of PAW treatments were registered on the growth parameters of seedling including stem and root length, leaf weight, leaf area and chlorophyll content, and the vigor of seedlings. Chlorophyll content significantly increased by 220% for PAW-treated 15 mn and by about 165% for PAW-treated 20 mn, respectively, compared with control. Additionally, PAW induce morphological changes on lettuce seeds which are associated with oxidizing species leading to better water and nutrients uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Filatova I, Azharonok V, Kadyrov M, Beljavsky V, Gvozdov A (2011) Shik, Antonuk A. Rom J Phys 56:139–143

    Google Scholar 

  2. Basaran P, Akhan U (2010) Innov Food Sci Emerging Technol 11:113–117

    CAS  Google Scholar 

  3. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I (2010) IEEE Trans Plasma Sci 38:2963–2967

    Google Scholar 

  4. Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Spectrochim Acta 57:609–658

    Google Scholar 

  5. Lu P, Cullen PJ, Ostrikov K (2016) In: Misra NN, Schluter O, Cullen PJ (eds) Cold plasma in food and agriculture: fundamentals and applications, Acad Press

  6. Takahata J, Takaki K, Satta N, Takahashi K, Fujio T, Sasaki Y (2015), Jpn J Appl Phys 54: 01AG07

  7. Moon J, Chung H (2000) J Electrost 48:103–114

    Google Scholar 

  8. Bailly C, El Maarouf BH, Corbineau F (2008) CR Biol 331:806–814

    CAS  Google Scholar 

  9. Jiang J, He X, Li L, Li J, Shao H, Xu Q, Ye R, Dong Y (2014) Plasma Sci Technol 16:54–58

    Google Scholar 

  10. Volin JC, Denes FS, Young RA, Park SMT (2000) Crop Sci 40:1706–1718

    CAS  Google Scholar 

  11. Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, Srisonphan S (2016) ACS Appl Mater Interfaces 8:19268–19275

    CAS  PubMed  Google Scholar 

  12. Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016). Front Plant Sci. https://doi.org/10.3389/fpls.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N (2019). Materials. https://doi.org/10.3390/ma12172751

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ohta T (2016) in: Misra NN, Schluter O, Cullen PJ (eds) Cold plasma in food and agriculture: fundamentals and applications, Acad Press

  15. Stoleru V, Burlica R, Mihalache G, Dirlau D, Padureanu S, Teliban G, Astanei A, Cojocaru A, Beniuga O, Patras A (2020) Sci Rep 10:20920

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian T, Ma R, Zhang Q, Feng H, Liang Y, Zhang J, Fang J (2015) Plasma Proces Polym 12:439–449

    CAS  Google Scholar 

  17. Zhou R, Zhou R, Zhang X, Li J, Wang X, Chen Q, Yang S, Chen Z, Bazaka K, Ostrikov K (2016) Sci Rep 6:39552

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Levchenko I, Bazaka K, Baranov O, Sankaran RM, Nomine A, Belmonte T, Xu S (2018) Appl Phys Rev 5:021103

  19. Bruggeman PJ et al (2016), Plasma Sources Sci Technol 25: 053002

  20. Sivachandiran L, Khacef A (2017) RCS Adv 7:1822–1832

    CAS  Google Scholar 

  21. Naumova IK, Maksimov AI, Khlyustova AV (2011) Surf Eng Appl Electrochem 47:263–265

    Google Scholar 

  22. Park DP, Davis K, Gilani S, Alonzo CA, Dobrynin D, Friedman G, Fridman A, Rabinovich A, Fridman G (2013) Curr Appl Phys 13:S19–S29

    Google Scholar 

  23. Zang Z, Rousseau A, Dufour T (2017) RSC Adv 7:31244–31251

    Google Scholar 

  24. Oehmigen K, Hahnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T (2010) Plasma Process Polym 7:250–257

    CAS  Google Scholar 

  25. Sacristán D, Recatal L, Viscara Rossel RA (2015) Sci Horticult 193:346–352

    Google Scholar 

  26. Liu R, Zhang H, Lal R (2016) Water Air Soil Pollut 227:42

    Google Scholar 

  27. Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, Rolim WR, de Jesus TA, Batista BL, Lange CN (2020) Environ Monit Assess 192:232

    CAS  PubMed  Google Scholar 

  28. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Bull Environ Contam Toxicol 66:727–734

    CAS  PubMed  Google Scholar 

  29. Lichtenthaler HK, Wellburn AR (1983) Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  30. Lukes P, Locke BR, Brisset JL (2012), In: Parvelescu VI, Magureanu M, Lukes P (Eds) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH

  31. Burlica R, Kirkpatrick MJ, Locke BR (2006) J Electrost 64:35–43

    CAS  Google Scholar 

  32. Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) J Hazard Mat 300:643–651

    CAS  Google Scholar 

  33. Bruggeman PJ, Leys C (2009) J Phys D: Appl Phys 42: 053001

  34. Dunand C, Crèvecoeur M, Penel C (2007) New Phyto 174:332–341

    CAS  Google Scholar 

  35. Lukes P (2002) PhD Dissertation, Institute of Plasma Physics Prague (Czech Republic)

  36. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Plasma sources Sci Technol 23: 015019

  37. Bradu C, Kutasi K, Magureanu M, Puač N, Živković S (2020) J Phys DAppl Phys. 53: 223001

  38. Thirumdasa R, Kothakotab A, Annapurec U, Siliverud K, Blundelle R, Gattf R, Valdramidis VP (2018) Trends in Food Sci Technol 77:21–31

    Google Scholar 

  39. Andrews M, Raven JA, Lea PJ (2013) Ann Appl Biol 16:165–317

    Google Scholar 

  40. Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland Massachusetts

    Google Scholar 

  41. Kučerová K, Henselová M, Slováková L, Hensel K (2019) Plasma Process Polym 16:1–14

    Google Scholar 

  42. Puač N, Škoro N, Spasić K, Živković S, Milutinović M, Malović G, Petrović ZL (2018) Plasma Process Polym 15:1700082

    Google Scholar 

  43. Holmes SC, Wells DE, Pickens JM, Kemble JM (2019). Horticulturae. https://doi.org/10.3390/horticulturae5030050

    Article  Google Scholar 

  44. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Curr Opin Plant Biol 13:265–272

    Google Scholar 

  45. Bewley JD, Black M (1994) In: Seeds. Boston: Springe. https://doi.org/10.1007/978-1-4899-1002-8-1

  46. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) J Exp Bot 65:789-798

  47. Padureanu S, Stoleru V, Patras A, Burlica R, Dirlau D, Astanei D, Beniuga O (2018) Proc.10th Int Conf Exp Elec and Power Eng. Iasi (Roumania)

  48. Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LS (2015). Front Plant Sci. https://doi.org/10.3389/fpls.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  49. Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M (2010) Plant Cell Environ 33:981–994

    CAS  PubMed  Google Scholar 

  50. Ismael SZ, Khandaker MM, Mat N, Boyce AN (2015) J Agro 14:331–336

    Google Scholar 

  51. Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C (2018) PLoS One 13:e0195512

  52. Sayyah M, Hadidi N, Kamalinejad M (2004) J Ethnopharmacol 92:325–329

    PubMed  Google Scholar 

  53. Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C (2013) Planta 238:381–395

    CAS  PubMed  Google Scholar 

  54. Weitbrecht K, Müller K, Leubner-Metzger G (2011) J Exp Botany 62:3289–3309

    CAS  Google Scholar 

  55. Ogawa K, Iwabuchi M (2001) Plant and cell physiology) 42:286–291

  56. Katzman LS, Taylor AG, Langhans RW (2001) Hortscience 36:979–981.

  57. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Can Res 63:7291–7300

    CAS  Google Scholar 

  58. Adhikari B, Adhikari M, Ghimire B, Park G, Choi EH (2019) Sci Rep 9:16080

    PubMed  PubMed Central  Google Scholar 

  59. Ghosh PK, Ajay N, Bandyopadhyay KK, Manna MC, Mandal KG, Misra AK, Hati KM (2004) Bioresour Technol 95:85–93

    CAS  PubMed  Google Scholar 

  60. Suzuki JY, Bollivar DW, Bauer CE (1997) Annual Rev Genet 31:61–89

    CAS  Google Scholar 

  61. Fraile-Robayo RD, Álvarez-Herrera JG, Reyes MAJ, Álvarez-Herrera OF, Fraile-Robayo AL (2017) Agronomía Colombiana. 35:216–222

  62. Cooke JE, Martin TA, Davis JM (2005) New Phytol 167:41–52

  63. Teixeiro Filho MCM, Buzetti S, Andeotti M, Arf O, de Sá ME (2011) Ciência Rural 41:1375–1382

    Google Scholar 

Download references

Acknowledgements

This Research is supported by Vingroup Innovation Foundation (VINIF – Vietnam), the Applied Plasma and Pollution Control Laboratoy of Institut of Applied Material Science (IAMS, Vietnam), and the collaboration with GREMI Laboratory of CNRS-Orleans University (France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thien Huu Pham or Ahmed Khacef.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Than, H.A.Q., Pham, T.H., Nguyen, D.K.V. et al. Non-thermal Plasma Activated Water for Increasing Germination and Plant Growth of Lactuca sativa L. Plasma Chem Plasma Process 42, 73–89 (2022). https://doi.org/10.1007/s11090-021-10210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10210-6

Keywords

Navigation